Skip to main content

Exercises 1.5 Problem set 2, due 19 October 2021

1.

Let \(n\in\NN\text{.}\) Construct a homeomorphism \(f \colon \RR^n \to S^n\smallsetminus\{(1,0,0,\dots,0\}\text{.}\)

2.

Define subspaces

\begin{equation*} D^2 = \{ (u,v) \in \RR^2 : \|(u,v)\| \leq 1\} \subset \RR^2 \end{equation*}

and

\begin{equation*} ST = \{(x,y,z)\in \RR^3 : (2-\|(x,y)\|)^2 + z^2 \leq 1\} \subset \RR^3\text{.} \end{equation*}

Construct a homeomorphism \(g \colon D^2 \times S^1 \to ST\text{.}\)

3.

Let us use the notation from the previous two problems. Consider the subspace

\begin{equation*} B^2 = \{ (u,v) \in \RR^2 : \|(u,v)\| \lt 1\} \subset \RR^2\text{.} \end{equation*}

Prove that \(S^3 \smallsetminus f(g(B^2 \times S^1))\) is homeomorphic to \(ST\text{.}\)