Skip to main content

Section 5.12 Coproducts of sets

For any indexed set \(\{U_a\}_{a\in A}\text{,}\) the coproduct or disjoint union is the set

\begin{equation*} \coprod_{a\in A}U_a\coloneq\bigcup_{a\in A}U_a\times\{a\}\text{.} \end{equation*}

For every \(b\in A\text{,}\) there is an attached map

\begin{equation*} \iota_b\colon\fromto{U_b}{\coprod_{a\in A}U_a} \end{equation*}

given by \(\iota_b(x)=(x,b)\text{,}\) called the inclusion onto the \(b\)-th summand.

The coproduct is really dual to the product. Here's how: for every set \(S\text{,}\) every indexed set \(\{U_a\}_{a\in A}\text{,}\) and every indexed set \(\left\{ f_a\colon U_a \to S \right\}\) of maps, there exists a unique map

\begin{equation*} f \colon \coprod_{a\in A}U_a \to S \end{equation*}

such that \(f\circ\iota_a=f_a\text{.}\) Indeed, the map \(f\) is given by the assignment \((x,a) \mapsto f_a(x)\text{.}\)

\DeclareFieldFormat{labelnumberwidth}{#1} [keyword=alph] \DeclareFieldFormat{labelnumberwidth}{{#1\adddot\midsentence}} [heading=none, notkeyword=alph]