Skip to main content

Section 1.6 Union

Definition 1.6.1.

Let \(S\) and \(T\) be two sets. The union \(S \cup T\) is the set consisting of the elements of either \(S\) or \(T\text{.}\) That is, \(x \in S \cup T\) exactly when either \(x \in S\) or \(x \in T\text{.}\) One can write

\begin{equation*} S \cup T = \{x : (x \in S) \vee (x \in T)\} \end{equation*}

When \(S\) and \(T\) are subsets of some common set \(U\) and are given by set-builder notation, we can use disjunction to describe the union. That is, if

\begin{equation*} S = \{x \in U : \phi(x) \} \end{equation*}

for a statement \(\phi(x)\text{,}\) and if

\begin{equation*} T = \{x \in U : \psi(x) \} \end{equation*}

for a statement \(\psi(x)\text{,}\) then the union is given by

\begin{equation*} S \cup T = \{x \in U : \phi(x) \vee \psi(x)\}\text{.} \end{equation*}

Consider the sets

\begin{equation*} S = \{n \in \NN_0 : n\text{ is divisible by } 2\} \text{ and } T = \{n \in \NN_0 : n\text{ is divisible by } 5\}\text{.} \end{equation*}

Then the union is

\begin{equation*} S \cup T = \{n \in \NN_0 : n\text{ is divisible by either } 2\text{ or } 5\}\text{.} \end{equation*}

We can write out a few of the elements:

\begin{equation*} S \cup T =\{0,2,4,5,6,8,10,12,14,15,\dots\}\text{.} \end{equation*}

Consider the sets

\begin{equation*} S = \{x \in \NN_0 : x \geq 5\} \end{equation*}

and

\begin{equation*} T = \{x \in \NN_0 : x \leq 7\}\text{.} \end{equation*}

Then the union is

\begin{equation*} S \cup T = \{x \in \NN_0 : (x \geq 5) \vee (x \leq 7) \} = \NN_0\text{.} \end{equation*}

Consider the sets

\begin{equation*} S = \{x \in \NN_0 : x \geq 7\} \end{equation*}

and

\begin{equation*} T = \{x \in \NN_0 : x \leq 5\}\text{.} \end{equation*}

Then the union is

\begin{equation*} S \cup T = \{x \in \NN_0 : (x \geq 7)\vee(x \leq 5) \} = \{0,1,2,3,4,5,7,8,\dots\}\text{,} \end{equation*}

the set of all natural numbers apart from \(6\text{.}\)