Skip to main content

Exercises 5.8 Week 6 Exercises, due 2 November 2021

Let \((a_n)_{n=0}^{\infty}\) be a bounded sequence of real numbers. For every \(k\in\NN_0\text{,}\) we define

\begin{equation*} b_k = \inf \{a_n : n \geq k\} \end{equation*}

and

\begin{equation*} c_k = \sup \{a_n : n \geq k\}\text{.} \end{equation*}
1.

Prove that the sequence \((b_k)_{k=0}^{\infty}\) converges. An analogous argument will show that \((c_k)_{k=0}^{\infty}\) converges. We write

\begin{equation*} \liminf_{n\to\infty} a_n = \lim_{k \to \infty} b_k \end{equation*}

and

\begin{equation*} \limsup_{n\to\infty} a_n = \lim_{k \to \infty} c_k\text{.} \end{equation*}
2.

For every \(n\in\NN\text{,}\) let \(x_n = (-1)^n(1-1/n)\text{.}\) Compute \(\liminf_{n\to\infty} x_n\) and \(\limsup_{n\to\infty} x_n\text{.}\)

3.

Show that

\begin{equation*} \liminf_{n\to\infty} a_n = \limsup_{n \to \infty} a_n \end{equation*}

if and only if \((a_n)_{n=0}^{\infty}\) converges.