Section 1.14 A first look at induction
Recall that we defined the natural numbers as sets in an iterative fashion. We declare zero to beExample 1.14.1. A simple induction argument.
Let us prove by induction that for any natural number \(n\text{,}\) one has
\begin{equation*}
0+1+2+\cdots+n = \frac{n(n+1)}{2}\text{.}
\end{equation*}
When \(n=0\text{,}\) this is the claim that \(0 = \frac{0\cdot 1}{2}\text{,}\) which is certainly true. Now let \(m\in\NN_0\text{,}\) and assume that
\begin{equation*}
0+1+2+\cdots+m = \frac{m(m+1)}{2}\text{.}
\end{equation*}
From this we deduce
\begin{equation*}
0+1+2+\cdots+m+(m+1) = \frac{m(m+1)}{2}+m+1 = \frac{m(m+1)}{2}+\frac{2(m+1)}{2} = \frac{(m+1)(m+2)}{2}\text{.}
\end{equation*}
Thus by the Principle of Mathematical Induction, we deduce that for any natural number \(n\text{,}\) one has
\begin{equation*}
0+1+2+\cdots+n = \frac{n(n+1)}{2}\text{.}
\end{equation*}