
DELIGNE COHOMOLOGY

. P H 

e singular cohomology of smooth projective varieties overC naturally takes
values not in the category of abelian groups, but in the category of Hodge struc-
tures.

.. Definition. Denote by S the real algebraic group C×; that is, S is the Weil
restriction of the complex algebraic groupGm toR ⊂ C. Denote byw : Gm . S
the canonical morphism that on real points is the inclusion R× . C×.

Now aHodge structure is a finite rank abelian groupHZ along with an action σ
of the real algebraic group S on HR := HZ ⊗ R. We will say that (HZ, σ) is pure
of weight k if the action of σw(t) on HR is action by tk for any t ∈ R×.

.. An action of S(C) ∼= C× × C× on HC := HZ ⊗ C is specified by the
decomposition

HC =
⊕
p,q∈Z

Hp,q, Hp,q = {x ∈ HC | ∀(u, v) ∈ S(C), (u, v)x = u−pv−qx}.

is representation is real just in case Hq,p = Hp,q. Hence a Hodge structure can
be defined as such a decomposition. is Hodge structure is of weight k if and
only if Hp,q = 0 unless p+ q = k.

is decomposition also specifies a filtration ofHC, called theHodge filtration:

· · · F p+1H ⊂ F pH ⊂ · · · ⊂ HC,

given by
F pH :=

⊕
r≥p,s∈Z

Hr,s.

eHodge structureH is pure of weight k just in case F qH∩F pH = 0whenever
p+ q = k+ 1.

.. Example. Define a Hodge structure

Z(1) := (2π
√
−1)Z = ker

[
exp : C . C×] with Z(1)−1,−1 = Z(1);

this is called the Tate Hodge structure, pure of weight −2. Its tensor powers are
Hodge structures

Z(n) := (2π
√
−1)nZ ⊂ C with Z(n)−n,−n = Z(n);

these are pure of weight−2n.

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..Example. IfX is a compact Kählermanifold, then the holomorphic Poincaré
lemma guarantees a quasi-isomorphism ΩX := Ω•

X ≃ CX. Now the “foolish”
filtration

· · · . Ω≥n
X . Ω≥n−1

X . · · · . ΩX

gives rise to a spectral sequence

E p,q
1 = Hq(X,Ωp

X) =⇒ Hp+q(X,C)

whose abutment is the Hodge filtration on H∗(X,C). From Hodge theory, we
know that this spectral sequence degenerates, whence we obtain a decomposition

Hk(X,C) =
⊕
p+q=k

Hq(X,Ωp).

Moreover, one has Hp(X,Ωq) = Hq(X,Ωp). us the singular cohomology
Hk(X,Z) is a Hodge structure pure of weight k.

is is all neatly summarized in the statement that the singular cohomology
of compact Kähler manifolds (and thus of smooth projective varieties over C) is
“really” valued in the category of Hodge structures.

. MH 

Onedoes not find a pureHodge structure ofweight kon the singular cohomol-
ogy Hk(U,Z) of a general quasiprojective varietyU overC. Instead, the weights
are mixed.

..Definition. Amixed Hodge structure is a filtered object

· · · ⊂ Wk−1HZ ⊂ WkHZ ⊂ · · · ⊂ HZ

in the category of Hodge structures whose k-th graded piece

grWk HZ := WkHZ/Wk−1HZ

is pure of weight k.

.. Example. If H is a mixed Hodge structure, then for any integer m we can
define them-th Tate twist of H as H(m) := H⊗ Z(m); in particular,

H(m)Z = (2π
√
−1)mHZ, WkH(m) = Wk+mH, F pH(m) = F p+mH.

..Example (Deligne, Steenbrink). SupposeX a smooth and proper variety, and
supposeD ⊂ X a divisor with normal crossings.en the integral cohomology

Hk(X− D,Z)

admits a canonical mixed Hodge structure.
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Sketch of proof. Denote by j : X− D . X the open immersion. e logarithmic
de Rham complex is the subcomplex ΩX⟨logD⟩ ⊂ j⋆ΩX−D consisting of those
ω such that both ω and dω have at most a pole of order one on D. e inclusion
ΩX⟨logD⟩ . j⋆ΩX−D is a quasi-isomorphism, whence:

Hk(X−D,C) ∼= Hk(X−D,ΩX−D) ∼= Hk(X, j⋆ΩX−D) ∼= Hk(X,ΩX⟨logD⟩).
Again the “foolish” filtration on ΩX⟨logD⟩ gives rise to a degenerating spectral
sequence on the cohomology, yielding a decomposition

Hk(X,ΩX⟨logD⟩) =
⊕
p+q=k

Hq(X,Ωp
X⟨logD⟩).

It remains to construct the weight filtration onHk(X−D,Z)with the desired
properties.e plan now is to construct a complex E of sheaves of abelian groups
on X along with a map E . Rj⋆ZX−D such that:

∗ the cohomology sheaves H m
X (E) will be 0 unless 0 ≤ m ≤ n, in which

case the morphismH m(E) . Rmj⋆ZX−D will be an isomorphism; and
∗ there is a quasi-isomorphism Λ(e)⊗ C ..∼ ΩX⟨logD⟩.

e weight filtration will then be induced by the canonical filtration of E.
Let MX,D := OX ∩ j⋆O

×
X−D be the log structure on X generated by D. Form

the exponential e : OX . M
gp
X,D given by

e(g) := exp(2πig).

Regard e as a two term complex, quasi-isomorphic to τ≤1Rj⋆ZX−D. e Koszul
complex Λ(e) of e is given by

Λ(e)p := Γn−pOX ⊗ZX Λ
pM

gp
X,D,

where n = dimC X. [Properly speaking, this cannot be done until e is replaced
with a complex in which both terms are torsion-free.] One obtains a map

Λ(e) . Rj⋆ZX−D

with our desired properties.
Let us construct the map φ : Λ(e) . ΩX⟨logD⟩ explicitly:

φ(x[n−p] ⊗ (y1 ∧ · · · ∧ yp)) = (2πi)−p xn−p

(n− p)!
d log y1 ∧ · · · ∧ d log yp,

which actually induces a quasiisomorphism Λ(e)⊗ C ..∼ ΩX⟨logD⟩. □
Letusnote that under this quasi-isomorphism, the canonical filtrationonΛ(e)⊗

C corresponds to a filtrationW∗ΩX⟨logD⟩ in which:

WmΩ
p
X⟨logD⟩ =


0 ifm < 0;
Ωp−m

X ∧Ωm
X⟨logD⟩ if 0 ≤ m ≤ p;

Ωp
X⟨logD⟩ ifm > p.
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ese Hodge structures can also be found on the cohomology of simplicial
varieties. We mention an example of interest.

.. Example. SupposeG a complex linear algebraic group.en any even coho-
mology groupH2k(B∗G,Z) is pure of type (n, n). One can prove this by reducing
first to the case tori and then to Gm itself. e only potentially nonzero Hodge
numbers of H1(Gm,Z) = Z are h11 and h01 = h10, whence one deduces that
h11 = 1.

If we consider in particular the caseG = GLn, then we find that the universal
Chern classes ck ∈ H2k(B∗GLN,Q) are of type (k, k). Consequently, one may
deduce for any smooth complex algebraic varietyX, the image of the Chern char-
acter

χ i : Ki(X)⊗Q .
⊕
j∈Z

H2j−i(X,Q)

must lie in ⊕
j∈Z

(W2jH2j−i(X,Q) ∩ F iH2j−i(X,C)).

If X is projective, then in fact χ i = 0 for i > 0. Deligne cohomology actually
makes use of these Hodge conditions to extract finer invariants of K-theory and
thus of cycle classes.

. C    A–J 

.. Suppose X a smooth projective variety overC of dimension n. e cycle class
map

zmcyc : CH
m(X) . H2m(X,Z(m))

is constructed in the following manner. Suppose Z ⊂ X a smooth codimension
m subvariety.en we have theom isomorphism

θ : H2m(X,X− Z;Z(m)) ..∼ H0(Z;Z) ∼= Z.

We also have the restriction map

ρ : H2m(X,X− Z;Z(m)) . H2m(X;Z(m)).

Now we let zmcyc(Z) = ρθ−1(1).
We can also find anm-form ω that will be de Rham representative of zmcyc(Z) in

the following manner. LetV be a neighborhood of the zero section of the normal
bundle NZ/X that can be identified with the corresponding neighborhood of Z.
Now let ω be any real m-form whose support is in V and is compact over Z, such
that for any z ∈ Z, ∫

Vz

ω = 1.
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Extendω fromU to all ofXby 0.e image ofω inHm(X,R) represents the image
of zmcyc(Z) in Hm(X,R).

Nowwecanworkout thepositionof zmcyc(Z) is theHodgefiltrationbyPoincaré
duality. Indeed, one has ∫

X
ω ∧ β =

∫
U
ω ∧ β =

∫
Z
i⋆β

for any β ∈ H2n−2m(X,C). SinceU retracts ontoZ, there exists an (m− 1)-form
μ onU such that

β|U = π⋆(β|Z) + dμ;

hence ∫
X
ω ∧ β =

∫
U
ω ∧ π⋆(β|Z).

Now since
∫
Vz
ω = 1, we get ∫

X
ω ∧ β =

∫
Z
β|Z.

is integral vanishes unless β is of type (n−m, n−m); hence zmcyc(Z) is of type
(m,m). Consequently, we have defined a map

zmcyc : CH
m(X) . Hdgm(X),

where

Hdgm(X) := H2m(X,Z(m)) ∩Hm(X,Ωm)

∼= ker
[
H2m(X,Z(m)) .

H2m(X,C)
FmH2m(X,C)

]
.

.. Conjecture (Hodge Conjecture). For any smooth projective X, the rational
cycle class map

zmcyc ⊗Q : CHm(X)⊗Q . Hdgm(X)⊗Q

is surjective.

..eorem (Lefschetz, Hodge). e cycle class map

z1cyc : CH
1(X) ∼= Pic(X) . Hdg1(X)

is surjective, and its kernel is Pic0(X). Consequently,Hdg1(X) ∼= NS(X).

We can also ask about the kernel of the map in general. is is where interme-
diate Jacobians make their appearance.
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..Definition. SupposeHa torsion-freemixedHodge structure. For any integer
m, them-th Jacobian of H is

Jm(H) := HC/(FmHC +HZ).

Note that

Jm(H) ∼= J 0Hom(Z,H(m)) ∼= J 0Hom(Z(−m),H).

.. Proposition. IfH is a mixed Hodge structure such that WkH = H (we sayH
is “of highest weight k”), then for any m > k/2, the Jacobian JmH is a generalized
complex torus.

Proof. We first claim that the mapHR := HZ ⊗ R . HC/FmH is an injection.
Indeed, an element of the kernel lies in FmH∩HR and thus also in FmH∩FmH.
But the latter is 0. (For this, note if x ∈ FmH ∩ FmH is of weight h, then its
projection to grWh must be a sum of components of type (a, b), where a ≥ m and
b ≥ m, whence h ≥ 2m > k.)

Now let K be a complement of HR in the R-vector space HC/FmH.en we
get

JmH ∼= (HR/HZ)⊕ K ∼= (S1)r × Rs. □
If HC = FmH⊕ FmH, then s = 0 in the proof above. Consequently, we have:

...Corollary. IfH is a pure Hodge structure of weight 2m− 1, then Jm(H) is a
complex torus.

It turns out that these Jacobians are a handy way of computing the Ext groups
of mixed Hodge structures.

..eorem (Carlson). SupposeH′ andH′′ two torsion-ee mixed Hodge struc-
tures. en there is a canonical isomorphism

Ext1(H′,H′′) ∼=
W0Hom(H′,H′′)

(W0Hom(H′,H′′)C ∩ F 0Hom(H′,H′′)) +W0Hom(H′,H′′)Z
.

In particular, we have:

... Corollary. If for some m we have WmH′ = 0 and WmH′′ = H′′ (that is, if
the weight of H′ are all greater than the weights of H′′), then we have a canonical
isomorphism

Ext1(H′,H′′) ∼= J 0Hom(H′,H′′),

and this is a generalized complex torus.

...Corollary. For anymixedHodge structureH, the functorExt1(H,−) is right
exact. In particular, Extr(H,−) = 0 for r ≥ 2.

.. Example. Ifm < n, then

Ext1(Z(m),Z(n)) ∼= C/(2π
√
−1)n−mZ.



DELIGNE COHOMOLOGY 

.. Example. If H is a pure Hodge structure of weight 2m− 1, then

Jm(H) ∼= J 0Hom(Z(−m),H) ∼= Ext1(Z(−m),H).

..Definition. Suppose X a smooth projective variety overC. en

Jm(X) := Jm(H2m−1(X)) ∼=
H2m−1(X,C)

FmH(X,C)⊕H2m−1(X,Z)
is called the intermediate Jacobian of Griffiths.

When m = 1, we obtain the Picard variety J 1(X) = Pic0(X); when m =
dimC X, we obtain the Albanese variety Jm(X) of X.

If n = dimC X, Poincaré duality gives an alternate description:

Jm(X) ∼=
Fn−m+1H2n−2m+1(X)∨

H2n−2m+1(X,Z)
.

.. Suppose again X a smooth projective variety over C of dimension n. e
kernel

CHm
0 (X) := ker

[
zmcyc : CH

m(X) . Hdgm(X)
]

consists of cycles Z such that Z = ∂W for some W. Integration along this W
yields an element ∫

W
∈ Ω2n−2m+1(X)∨

On an exact form dψ with ψ ∈ Ω2n−2m, we have∫
W
dψ =

∫
Z
ψ,

which vanishes unless if ψ ∈ F n−m+1Ω2n−2m
X . Consequently,

∫
W defines an ele-

ment of F n−m+1H(X,C)∨. Now if we chose a differentW′ such that Z = ∂W′,
thenW−W′ is a class ofH2n−2m+1(X,Z), whence we get a well-defined class

φmX(Z) ∈
Fn−m+1H2n−2m+1(X)∨

H2n−2m+1(X,Z)
= Jm(X).

Furthermore, if Z and Z′ are rationally equivalent, then φmX(Z) = φmX(Z
′). (In

effect, if Z and Z′ are connected by a family of cycles parametrized by P1, we use
this perscription to obtain a holomorphicmap P1 . Jm(X), which must be con-
stant.)

We have just defined a map called the Abel–Jacobi map
φmX : CH

m
0 (X) . Jm(X).

.. Example (Bloch–Srinivas, Murre). Suppose X a smooth complete intersec-
tion of dimension n with h0n = 0.en the Abel–Jacobi map

φ2X : CH
2
0(X) . J 2(X)

is an isomorphism.
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. D 

Deligne cohomology can be thought of as a systematic way of packaging both
ordinary cohomology and the intermediate Jacobians.

.. Definition. For any integer p, the Deligne complex Z(p)D is a sheaf of com-
plexes (or, better, simplicial abelian groups, or, still better, spectra) on the site of
complex analytic manifolds defined as the homotopy fiber product:

Z(p)D := Z(p)×h
C Ω≥p.

Its cohomology groups on a compact complex analyticmanifoldX are theDeligne
cohomology groups:

Hq
D(X,Z(p)) := Hq(X,Z(p)D).

.. Equivalently, Z(p)D is the fiber of the natural map Z(p) . C/F pΩ.
One can form an explicit complex of sheaves of abelian groups on a complex

analytic manifold that represents Z(p)D:

0 . ZX(p) . OX . Ω1
X . · · · . Ωp−1

X . 0.

.. Example. Of course Z(0)D = Z, and so

Hq
D(X,Z(0)) ∼= Hq(X,Z).

.. Example. emap

..
..0 ..Z(1) ..OX ..0

..1 ..1 ..O×
X ..1

.exp . exp

is an equivalence exp : ZX(1)D ..∼ O×
X [−1], and so

Hq
D(X,Z(1)) ∼= Hq−1(X,O×

X ).

In particular, note that H2
D(X,Z(1)) ∼= Pic(X), and we have an exact sequence

0 . J1(X) . H2
D(X,Z(1)) . NS(X) . 0.

.. Example. ere is an equivalence

ZX(2)D ≃
[
d log : O×

X . Ω1
X
]
[−1].

One can show that H2
D(X,Z(2)) is the group of line bundles with holomorphic

connection.

.. e long exact sequence of the fiber gives

Hq−1(X,Z(p)) .
Hq−1(X,C)
F pHq−1(X,C)

. Hq
D(X,Z(p)) . Hq(X,Z(p)) .

Hq(X,C)
F pHq(X,C)

.



DELIGNE COHOMOLOGY 

When q < 2p, the map on the right is an injection, so we have a short exact
sequence

0 . J pHq−1(X,Z(p)) . Hq
D(X,Z(p)) . Hq(X,Z(p)) . 0.

When q = 2p, we get a short exact sequence

0 . J p(X) . H2p
D (X,Z(p)) . Hdgp(X) . 0.

Deligne–Beilinson cohomology is the extension of Deligne cohomology to
smooth quasiprojective varieties. e strategy is exactly the same as the strategy
to construct themixedHodge structure on the singular cohomology of a smooth
quasiprojective varieties. We discuss the foundations only briefly.

..Definition. By a good compactification
(U,X) = [ j : U ⊂ X ] ,

we will mean a smooth, proper variety X with a Zariski open j : U ⊂ X such that
D = X− U is a divisor with normal crossings.

For any integer p, the Deligne–Beilinson complex Z(p)D is the following sheaf
of complexes (or simplicial abelian groups or spectra) on the site of good com-
pactifications:

Z(p)DБ(U,X) := Rj⋆Z(p)×
h
Rj⋆C

Ω≥p
X ⟨logD⟩.

Its cohomology groups on a given compactification are theDeligne–Beilinson
cohomology groups:

Hq
DБ((U,X),Z(p)) := Hq(X,Z(p)DБ).

.. For proper maps g : Y . X of relative dimension d, there are transfer maps

g⋆ : Z(p)Y ×
h
CY

Ω≥p
Y = Z(p)D,Y . Z(p− d)D,X[−2d] = Z(p− d)X ×h

CX
Ω≥p−d

X [−2d];
these are just given by “integration along the fiber.” In the bundle case, this is easy
to write:

[Y+,Z(p)D] ≃ [Th(g)+,ΣN−2dZ(p−d)D] . [ΣNX+,ΣN−2dZ(p−d)D] ≃ [X+,Σ−2dZ(p−d)D]

.. Suppose X a smooth projective variety. We have a diagram

..
..0 ..CHm

0 (X) ..CHm(X) ..Hdgm(X) ..0

..0 ..Jm(X) ..H2m
D (X,Z(m)) ..Hdgm(X) ..0

.φmX .

zmcyc

..eorem. Suppose X a smooth projective variety.ere exists a cycle class map
γmcyc : CH

m(X) . H2m
D (X,Z(m))

completing this diagram.
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Construction. For any smooth subvariety i : Z ⊂ X of codimension m, define
γmcyc(Z) as the image of 1 under

i⋆Z ∼= H0
D(Z,Z) . H2m

D (X,Z(m)). □


