DELIGNE COHOMOLOGY

1. PURE HODGE STRUCTURES

The singular cohomology of smooth projective varieties over C naturally takes
values not in the category of abelian groups, but in the category of Hodge struc-
tures.

L1 Definition. Denote by S the real algebraic group C*; that is, S is the Weil
restriction of the complex algebraic group G,, toR C C. Denotebyw: G,,— S
the canonical morphism that on real points is the inclusion R* < C*.

Now a Hodge structure is a finite rank abelian group Hz along with an action &
of the real algebraic group S on Hy := Hz ® R. We will say that (Hz, o) is pure
of weight k if the action of rw/(#) on Hy is action by # for any # € R*.

1.2. An action of §(C) = C* x C* on Hc = Hz ® C is specified by the
decomposition
Hc = @ H HY = {x € Hc |V(u,v) € S(C), (u,v)x = u?v Ix}.
P4EL

This representation is real just in case H4? = H?, Hence a I—Iodge structure can
be defined as such a decomposition. This Hodge structure is of weight £ if and
only if H”? = O unless p + g = £.

This decomposition also specifies a filtration of Hc, called the Hodge filtration:

---FP+1HCFPHC--~CHC,

FH:= .

r>psEL

given by

The Hodge structure H is pure of weight £ just in case FP"HN FH = 0 whenever
pt+qg=k+1

1.3. Example. Define a Hodge structure
Z(1) == 27V —1)Z = ker [exp: C—C*] with Z(1)"""' =Z(1);

this is called the Zate Hodge structure, pure of weight —2. Its tensor powers are
Hodge structures

Z(n) = 27V/—1)"Z C C with Z(n)™ " = Z(n);

these are pure of weight —2z.
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1.4. Example. If Xis a compact Kihler manifold, then the holomorphic Poincaré
lemma guarantees a quasi-isomorphism Qy := Q% =~ Cy. Now the “foolish”
filtration

QYO Oy
gives rise to a spectral sequence
EPM = HI(X, Qf) = H'(X,C)

whose abutment is the Hodge filtration on H*(X, C). From Hodge theory, we

know that this spectral sequence degenerates, whence we obtain a decomposition
HY(X,C) = @D HI(X, ).
prq=k

Moreover, one has H?(X, Q7) = H?(X, Q’). Thus the singular cohomology
H*(X, Z) is a Hodge structure pure of weight 4.

This is all neatly summarized in the statement that the singular cohomology
of compact Kihler manifolds (and thus of smooth projective varieties over C) is
“really” valued in the category of Hodge structures.

2. MIXED HODGE STRUCTURES

One does not find a pure Hodge structure of weight £ on the singular cohomol-
ogy H*(U, Z) of a general quasiprojective variety U over C. Instead, the weights

are mixed.
2.1. Definition. A mixed Hodge structure is a filtered object
- C W H C W}Hz C --- C Hg
in the category of Hodge structures whose £-th graded piece
gr, Hz := W Hz/W,_1Hy
is pure of weight £.

2.2. Example. If H is a mixed Hodge structure, then for any integer 72 we can
define the m-th Tate twist of H as H(m) := H ® Z(m); in particular,

H(m), = 2zv—-1)mHz, WH(m) = W,.,H, F'H(m)=F'""H.

2.3. Example (Deligne, Steenbrink). Suppose X'a smooth and proper variety, and
suppose D C X a divisor with normal crossings. Then the integral cohomology

H'(X - D,Z)

admits a canonical mixed Hodge structure.
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Sketch of proof. Denote by j: X — D — X the open immersion. The logarithmic
de Rham complex is the subcomplex Qx(logD) C j Qx_p consisting of those
w such that both w and dw have at most a pole of order one on D. The inclusion
Qx(logD) — j, Qx_p is a quasi-isomorphism, whence:

HY(X—D,C) ¥ H¥(X—D,Qy p) 2 H'(X,j, Qx p) = H(X, Qx(logD)).

Again the “foolish” filtration on Qx(log D) gives rise to a degenerating spectral
sequence on the cohomology, yielding a decomposition

H(X, Qx(logD)) = €P H!(X, O (logD)).
prq=k
It remains to construct the weight fileration on H*(X — D, Z) with the desired

properties. The plan now is to construct a complex E of sheaves of abelian groups
on X along with a map £ — Rj Zx_p such that:

* the cohomology sheaves 77" (E) will be 0 unless 0 < 7 < 7, in which
case the morphism S (E) — R”j, Zy_p will be an isomorphism; and
* there is a quasi-isomorphism A(e) @ C =% Qx(log D).
The weight filtration will then be induced by the canonical filtration of E.
Let My p := Ox Nj 0%, be the log structure on X generated by D. Form
the exponential e: Oy —> .43, given by

e(g) = exp(27ig).
Regard ¢ as a two term complex, quasi-isomorphic to 7<1Rj, Zy_p. The Koszul
complex A(e) of ¢ is given by
Ale) :=T,_,Ox @z, N AT,
where » = dimc X. [Properly speaking, this cannot be done until ¢ is replaced
with a complex in which both terms are torsion-free.] One obtains a map

Ale) — RjZx p

with our desired properties.
Let us construct the map ¢: A(e) — Qx(log D) explicitly:

n— N\ — K"
(" @ (y, Ao Ay,)) = (2m1) " pidlosy Ao Adlogy,,
which actually induces a quasiisomorphism A(¢) @ C =% Qx(log D). O

Let us note that under this quasi-isomorphism, the canonical filtration on A (e)®
C corresponds to a filtration W, Qx(log D) in which:
0 ifm < 0;
W, (logD) = < Q4™ A Qi(logD)  if0 < m < p;
QO (log D) ifm > p.
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These Hodge structures can also be found on the cohomology of simplicial
varieties. We mention an example of interest.

2.4. Example. Suppose G a complex linear algebraic group. Then any even coho-
mology group H*(B, G, Z) is pure of type (1, #). One can prove this by reducing
first to the case tori and then to G, itself. The only potentially nonzero Hodge
numbers of H'(G,,,Z) = Z are b'' and h*" = h'", whence one deduces that
p=1.

If we consider in particular the case G = GL,, then we find that the universal
Chern classes ¢, € H*(B.GLy, Q) are of type (£, k). Consequently, one may
deduce for any smooth complex algebraic variety X, the image of the Chern char-
acter

7 Ki(X) © Q— P HY (X, Q)
j€z

must lie in

P (W, HY (X, Q) N F'HY (X, C)).

j€Z
If X is projective, then in fact y, = 0 for i > 0. Deligne cohomology actually
makes use of these Hodge conditions to extract finer invariants of K-theory and
thus of cycle classes.

3. CYCLE CLASSES AND THE ABEL-JACOBI MAP

3.1. Suppose X a smooth projective variety over C of dimension 7. The cycle class
map

2. CH”(X) — H”(X,Z(m))

cyc °
is constructed in the following manner. Suppose Z C X a smooth codimension
m subvariety. Then we have the Thom isomorphism

S H”(X,X - Z,Z(m)) ~H"(Z,Z) = Z.
We also have the restriction map

p H”(X, X — Z; Z(m)) — H"(X; Z(m)).
Now we let 2 (Z) = p3~'(1).

cyc

We can also find an 7-form w that will be de Rham representative of 27, (Z) in
the following manner. Let 7"be a neighborhood of the zero section of the normal
bundle Vz/x that can be identified with the corresponding neighborhood of Z.

Now let @ be any real m-form whose support is in 7 and is compact over Z, such

that forany z € Z,
/ w=1.
Ve
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Extend w from U'to all of X by 0. The image of w in H” (X, R) represents the image
ofz” (Z)in H” (X, R).

cyc
Now we can work out the position of z7; (Z) is the Hodge filtration by Poincaré

duality. Indeed, one has

[one=[one=[re

forany 8 € H” >”(X, C). Since U retracts onto Z, there exists an (7 — 1)-form
won Usuch that

Blu=7"(Blz) + dy;

[one=[onzn.

Now since wa = 1, we get
/w/\ﬂz/ﬂ]z
X z

This integral vanishes unless 8 is of type (7 — 72,7 — m); hence 2

hence

(Z) is of type

(m,m). Consequently, we have defined a map

2" . CH”(X) — Hdg" (X),

cyc*®
where

Hdg”(X) = H”(X,Z(m)) NH"(X,Q")
H>”"(X,C)

~ 2m _ l
>~ ker |H”(X,Z(m)) FIX.C) |

3.2. Conjecture (Hodge Conjecture). For any smooth projective X, the rational
cycle class map

2. ® Q: CH”(X) ® Q— Hdg"(X) ® Q
is surjective.
3.3. Theorem (Lefschetz, Hodge). The cycle class map
z4,.: CH'(X) = Pic(X) — Hdg' (X)
is surjective, and its kernel is Pic®(X). Consequently, Hdg' (X) = NS(X).

We can also ask about the kernel of the map in general. This is where interme-
diate Jacobians make their appearance.
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3.4. Definition. Suppose H a torsion-free mixed Hodge structure. For any integer

m, the m-th Jacobian of H is

Note that

3.5. Proposition. IfH is a mixed Hodge structure such that WH = H (we say H

is ‘of highest weight k”), then for any m > k|2, the Jacobian J"H is a generalized

complex torus.

Proof. W first claim that the map Hg := Hz ® R— H¢/F”H is an injection.

Indeed, an element of the kernel lies in #””H N Hy and thus also in F”H N F”H.

But the latter is 0. (For this, note if x € F”H N F”H is of weight 5, then its
jecti v b f ftype (a,b), where 2 > m and

projection to gr,” must be a sum of components of type (4, £), >

b > m,whence h > 2m > k.)
Now let K be a complement of Hy in the R-vector space Hc/F”H. Then we

get
J”H 2 (Hg/Hz) ® K = (S') x R’. O
IfHec = F”H @ F”H, then s = 0 in the proof above. Consequently, we have:

3.5.1. Corollary. IfH is a pure Hodge structure of weight 2m — 1, then J”(H) is a
complex torus.

It turns out that these Jacobians are a handy way of computing the Ext groups
of mixed Hodge structures.

3.6. Theorem (Carlson). Suppose H' and H" two torsion-free mixed Hodge struc-
tures. Then there is a canonical isomorphism

WyHom(H', H")
(WoHom(H', H")c N F'Hom(H', H")) + WoHom(H, H"),”

Ext' (H', H") =

In particular, we have:

3.6.1. Corollary. Iffor some m we have W,,H' = 0 and W, H" = H" (that is, if
the weight of H' are all greater than the weights of H" ), then we have a canonical
isomorphism

Eth(H/, H”) gjoma_ll’ H”),

and this is a genevalized complex torus.

3.6.2. Corollary. For any mixed Hodge structure H, the functor Ext' (H, —) is right
exact. In particular, Ext'(H, —) = 0 forr > 2.

3.7. Example. If m < z, then

Ext!(Z(m),Z(n)) = C/(2zv/—1)""L.
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3.8. Example. If H is a pure Hodge structure of weight 27 — 1, then
J”(H) = J°Hom(Z(—m), H) = Ext'(Z(—m), H).
3.9. Definition. Suppose X a smooth projective variety over C. Then
H¥»1 (X,C)

F"H(X,C) @ H" 1(X,Z)
is called the intermediate Jacobian of Grifhths.

When 7 = 1, we obtain the Picard variety J'(X) = Pic”(X); when m =
dimc X, we obtain the Albanese variety J”(X) of X.

If » = dimc X, Poincaré duality gives an alternate description:
Fn—m-‘rl H2n72m+1 (X)V

J”(X)
HZn—2m+1 (Xa Z)

3.10. Suppose again X a smooth projective variety over C of dimension 7. The
kernel

T = ) =

12

cwm:@+wammﬂmmm

cyc °
consists of cycles Z such that Z = OW for some WW. Integration along this 17
yields an element

/ c QZn—Zm-H(X)\/
w

On an exact form dy with y € QY72 e have

/Wz/%
w Z

which vanishes unless if y € F ”7’”+1Q)2(”_2m. Consequently, f W defines an ele-
ment of """ H(X, C)". Now if we chose a different ¥ such that Z = W,
then W — W isaclass of Hs,—2,,4+1(X, Z), whence we get a well-defined class

F'nfm+lH2n—2m+l (X)\/
Py (2) €
HZn—Zm—‘rl (X7 Z)

Furthermore, if Z and Z' are rationally equivalent, then ¢7(Z) = ¢7(Z'). (In
effect, if Z and Z' are connected by a family of cycles parametrized by P!, we use
this perscription to obtain a holomorphic map P! — J”(X), which must be con-
stant.)

We have just defined a map called the Abel—Jacobi map

?y: CHy (X) —J"(X).

3.11. Example (Bloch—Srinivas, Murre). Suppose X a smooth complete intersec-

tion of dimension 7 with #”” = 0. Then the Abel-Jacobi map
Py CHY(X) —J*(X)

=J"(X).

is an isomorphism.
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4. DELIGNE COHOMOLOGY

Deligne cohomology can be thought of as a systematic way of packaging both
ordinary cohomology and the intermediate Jacobians.

4.1. Definition. For any integer p, the Deligne complex Z(p)p is a sheaf of com-
plexes (or, better, simplicial abelian groups, or, still better, spectra) on the site of
complex analytic manifolds defined as the homotopy fiber product:

Z(p)p = Z(p) xL. Q="

Its cohomology groups on a compact complex analytic manifold X are the Deligne

cohomology groups:
HL, (X, Z(p)) = H'(X, Z(p)p)-
4.2. Equivalently, Z(p)p is the fiber of the natural map Z(p) — C/F’Q.

One can form an explicit complex of sheaves of abelian groups on a complex
analytic manifold that represents Z(p)p:

0—Zx(p) — Ox— QL — ... O 0.
4.3. Example. Of course Z(0)p = Z, and so
HY(X,Z(0)) = H(X, Z).
4.4. Example. The map

0— Z(1) — Oy — 0

el e |

1 1 o 1

is an equivalence exp: Zx(1)p = 05 [—1], and so
HI(X, Z(1)) = HI (X, 05).
In particular, note that Hf, (X, Z(1)) & Pic(X), and we have an exact sequence
0—J'(X) — Hp (X, Z(1)) — NS(X) — 0.
4.5. Example. There is an equivalence
Zx(2)p =~ |dlog: OF — Q)] [-1].
One can show that Hf, (X, Z(2)) is the group of line bundles with holomorphic

connection.

4.6. The long exact sequence of the fiber gives
H™'(X,C)
FPH (X, C)

H(X,C)

H" (X, Z(p)) — FRIX.C)

—HL(X, Z(p)) — H!(X, Z(p)) —
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When ¢ < 2p, the map on the right is an injection, so we have a short exact
sequence
0 —J'H™ (X, Z(p)) — Hp, (X, Z(p)) — H'(X, Z(p)) — 0.
When g = 2p, we get a short exact sequence
0— J*(X) — HJ (X, Z(p)) — Hdg' (X) — 0.

Deligne-Beilinson cohomology is the extension of Deligne cohomology to
smooth quasiprojective varieties. The strategy is exactly the same as the strategy
to construct the mixed Hodge structure on the singular cohomology of a smooth
quasiprojective varieties. We discuss the foundations only briefly.

4.7. Definition. By a good compactification
U =1 UCK],

we will mean a smooth, proper variety X with a Zariski open j: U C X such that
D = X — Uis adivisor with normal crossings.

For any integer p, the Deligne—Beilinson complex Z(p)p is the following sheaf
of complexes (or simplicial abelian groups or spectra) on the site of good com-
pactifications:

Z(p)os(U.X) = Ri,Z(p) X}, c O’ (log D).

Its cohomology groups on a given compactification are the Deligne—Beilinson

cohomology groups:
Hs (U, X), Z(p)) := H'(X, Z(p)ps)-
4.8. For proper maps g: ¥ — X of relative dimension d, there are transfer maps
& Zp)y xt, OF = Z(p)oy—Z(p — d)px|—2d) = Z(p — d)x x2, QF~“[~2d);

these are just given by “integration along the fiber.” In the bundle case, this is easy
to write:

¥4 Z(p)o] ~ [Th(g)+ T2 (p—d)o) — [EVX,, T MZ(p—d)p) = [Xo, T Z(p—d)p)

4.9. Suppose X a smooth projective variety. We have a diagram

m

0 CHJ(X) — - CH"(X) " Hdg”(X) — 0

7| |

0 — J"(X) — Hy"(X,Z(m)) — Hdg"(X) — 0

4.10. Theorem. Suppose X a smooth projective variety. There exists a cycle class map
Vet CH”(X) — HY (X, Z(m))

completing this diagram.
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Construction. For any smooth subvariety i: Z C X of codimension 7, define
Veye (Z) as the image of 1 under

iLWZ = HY(Z,Z)— HE (X, Z(m)). 0



