THE ATIYAH-HIRZEBRUCH SPECTRAL SEQUENCE FOR
ALGEBRAIC K-THEORY

by
Clark Barwick

These are notes for a talk for ©X. T'll describe a weight filtration on the algebraic K-theory of
a regular scheme, due to Grayson. I'll describe it again using the slice filtration of Voevodsky. Fi-
nally, I'll sketch a proof that the graded pieces of this filtration are given by motivic cohomology,
in the sense described in Jacob Lurie’s lecture.
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1. Motivation from topology

Notation 1.1. — For any spectrum E and any space (i.e., simplicial set) X, write E(X) for the
function spectrum F(X*X_, E), and write

E(X)=E_(X)=nr_EX)
1.2. — The skeletal filtration
X°cX'c-cX"'cX'c--CX
induces a limit sequence
E(X)— - —EX") —EX") — -« — E(X") — E(X°),
whence, if lim1>  E3" =0, we have a strongly convergent spectral sequence
EX =E*M(X* /X7 = ETF(X),

called the Atiyah-Hirzebruch spectral sequence.



2 CLARK BARWICK
Lemma 1.3. — One may identify the E, term thus:
EX = EXH(X° XN = A5(X° /X EY).
Lemma 1.4. — For any abelian group r, the cohomology of the complex
S H(X X ) BN XY X ) e

where the differential is the composite

(XX 7) — B (X ) — BP0 X0, m),
is precisely H*(X , 7).

bl

Corollary 1.5. — The E, page of the Atiyah-Hirzebruch spectral sequence can be identified thus:
B = H'(X,EY) = E™(X).

Example 1.6. — When E is even periodic, this spectral sequence is particularly simple. In par-
ticular, for complex K-theory, one has

H’(X,Z) ift iseven;
Es,t E
2 0 if ¢ is odd.

The differentials of this spectral sequence are torsion; hence it degenerates rationally.

} — KU**(X).

1.7. — Inspired by this observation, Beilinson offered a provisional definition of motivic coho-
mology with rational coefficints as the weight ;7 Adams eigenspace

H'(X,Q()) =Ky _{(X)J).
2. K-theory as a (1, 1)-periodic P'-spectrum

Suppose S a separated, noetherian scheme of finite Krull dimension. Then K: X +— K(X)
defines a presheaf of spectra on the category (Sch/S) of noetherian schemes of finite Krull di-
mension over .

Theorem 2.1 (Nisnevich descent). — The presheaf K satisfies Nisnevich descent on (Sch/S).
Corollary 2.2. — The presheaf K extends uniquely to a functor
K: S (Sm/S)¥ — Fp

that sends colimits of sheaves on the Nisnevich site (Sm/S)y;, of smooth, noetherian S-schemes of
finite Krull dimension to limits of spectra.

Proposition 2.3 (Homotopy invariance). — On regular schemes, algebraic K-theory is A'-invariant;
that s, for any regular scheme X, the projection X x A' — X induces an equivalence K(X) ~
K(X x A).

Corollary 2.4. — The presheaf K descends uniquely to a functor
K:LyS(Sm/S)5 — b

that sends colimits in Ly & (Sm/ )y, to limits of spectra.
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Corollary 2.5. — The presheaf K extends to a unique pointed functor
K: (%/Ly F(Sm/S))” — Fp
that sends colimits to limits such that for any smooth S-scheme X, one has K (X,)=K(X).

Corollary 2.6. — The functor QK is representable; that is, there is a unique A'-invariant sheaf
BGL and an equivalence of Nisnevich sheaves

O° A ~ Map( Ly S ((-),,BGL).

2.7. — To construct BGL, one may begin by contemplating the sheat BGL, = [,.,BGL,.
This is an £ monoid in L, .#(Sm/S)y;,. Hence it admits a classifying space B(BGL,) and a
group completion B(B GL,). One sees, almost by definition, that

BGL ~QB(BGL,).
It is also not difficult to construct an equivalence
BGL_ xZ~QB(BGL.).

Here, the main point is that each BGL, is Al-connected; this follows from the fact that for any
Nisnevich sheaf X, the morphism ﬁo(X ) — ﬁoAl( ) of sheaves of sets is an epimorphism.
Consider the Grassmannian of k-planes in N-space G¢(k,N). One can form the colimits

G(k,00) = colimy, Gs(k,N)
as well as
G(00,00) = colimy, Gg(k,00) = colimy 5, Gg(k, N)
as ind-schemes. It is not hard to see that Gs(k, N) is the quotient (U, 5/ GL, )., where U,  is the
scheme of monomorphisms @’Sk — O). Likewise Gy(k,00) is the quotient (U, .,/ GL;),,, and

this quotient is in turn a model for p, p*B GL,, where p is the projection (Sm/S),, — (Sm/$)x;,-
By Hilbert Theorem 90, we now have

Gy(k,00) ~ (Uk,oo/GLk)ét ~p p"'BGL, ~BGL,

We conclude that G(00,00) x Z represents the K-theory space functor in the sense that there is
a equivalence of Nisnevich sheaves

QA ~ Map(*/L o Sm/S)le)((_)Jr’ G(00,00) X Z)

Proposition 2.8 (Projective bundle). — Suppose V' a vector bundle of rank r + 1 on a noetherian
scheme X of finite Krull dimension. Then there is a canonical equivalence

K(P, V)~ K(X)V"+D,
In particular, K(P' x X )~ K(X)V K(X).
Corollary 2.9. — In particular, for any pointed smooth scheme (X, x), one has
K (P'A(X,x)) :I?(X,x).
(Here we think of P! as pointed at 0o.)
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Corollary 2.10. — The functor K extends canonically to a unigue stable functor
K: Fppi (5] L L (Sm/S)ie) ® — Fp

that sends colimits to limits such that for any pointed smooth S-scheme (X, x), one has K (XX, x)) =
K(X,x).

Corollary 2.11. — There exists a P'-spectrum BGL € Fppi (/L a1 (Sm/S)y;s) such that for any
smooth S-scheme X,
KPU(X)=[23X,,$" NG ABGL].

Moreover, BGL s (1, 1)-periodic in the sense that there is a canonical equivalence

BGL~BGLAP'~BGLAS'AG,,.

2.12. — We way construct BGL using BGL in the following manner. Observe that
Map(P' ABGL,BGL) =~ Nlirkn Map(P' A G4(k,N),BGL)
k20

~ lim K(P'AG,(k,N))

N>E>0

lim K(Gq(k,N))

N>k>0

~ lim K(G,(k,N))

N>E>0

~ nggo Map(Gq(k,N),BGL)

~ Map(BGL,BGL).

Now we may contemplate the map @: P' ABGL — BGL that corresponds to the identity under
the identifications above. Now it is easy to check that BGL is the “constant” P!-spectrum whose
structrue maps are all a.

2

3. Grayson’s filtration by commuting automorphisms

Suppose X a quasiseparated, quasicompact scheme. Goodwillie and Lichtenbaum introduced
a exhaustive filtration on the homotopy K-theory of X:

- — W?KH(X) — W'KH(X) — W°KH(X)=KH(X).

3.1. — For any two quasicompact and quasiseparated schemes X and Y, define the co-category
P (X,Y) as the oco-category of pseudocoherent complexes M on X x Y such that supp M is finite
over X and pr,, M is a perfect complex on X. We contemplate the bivariant K-theory spectrum

K(X,Y):=KZ(X,Y).
Note that K(X,SpecZ) = K(X) and K(SpecZ,Y) = G(Y). Observe also that the assignment
(M,N)+— pry; (pr;, M ® pr;, N) defines a morphism K(X,Y)AK(Y,Z) — K(X,Z). One can

show that this gives the category of quasicompact and quasiseparated schemes the structure of a
category enriched in spectra.
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Now for a fixed quasicompact and quasiseparated scheme X, define, for any finite set 7, the
dual I-th cross-effects ct! K(X;—): (x/Sch)*! — b as the functor

cr[K(X;YI)::coﬁb colim K X,HY] HK<X,HY1>

IS i€l iel
Now write
W/KH(X):= colAim crIK(A;(;Pl,Pl, ., P,
For any integer k, the assignment M +— pry, (M ® pr; O(k)) defines a morphism
m(k):K(X,Y x P') — K(X,Y).
Now the difference m — m(—1) descends to a morphism
WITKH(X) — W/ KH(X),
defining a filtration W*KH(X) on
KH(X):= colAim K(AS)-

3.2. — Suppose now X is regular and noetherian. Then KH(X) ~ K(X), and the filtration can
be regarded as a filtration on K(X) itself.

The following result will be a consequence of our main theorem, in the last section.

Theorem 3.3. — Suppose S = Spec k. Then the successive quotients can be expressed as

Wt/t-HKH(X) ~ ColAim cijO(A;(;Pl,Pl,--"Pl)

~ colAim coker Zn:KO <A;( X (pl)x(/—1)> — K, <A;( X (Pl)Xt>

=1
In particular, they arve simplicial Z-modules.
Definition 3.4. — For any j >0, let us write Z(;) := Q¥ W//I*'\KH(X).
3.5. — The filtration W*KH (X)) gives rise to a spectral sequence
EXt=n  W/TKHX)=K,_ (X).

This is the Atiyah-Hirzebruch spectral sequence for algebraic K-theory. Using our Z(; ), the E, page

can be reindexed to take a more familiar form for geometers:
it s +
Ey' =H'(X,Z(—t)) = K" (X).
Observe that the differentials are torsion, and so this spectral sequence degenerates rationally.

We will prove the following result and its corollaries in a later seminar.

Theorem 3.6. — The actions of the Adams operations of Z(j) are pure of weight j.
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Corollary 3.7. — The filtration on K (X') given by the spectral sequence
ES = B (X, Z(~1)) = K (X)

coincides rationally with the y-filtration on K (X).

Corollary 3.8. — One has

Hs—t(X’ Q(—t)) ~ Ks—i—t(X)(c;f)’

as expected by Beilinson.

Proposition 3.9. — The quotient W°/(X) is the K-theory of the following symmetric monoidal
virtual Waldhausen co-category: for any n € A, denote by W1 (X) the ind-co-category indexed on

closed subschemes Z C X x (P')*/ x A7 that are finite over X x A7 defined by
WI(X), = Perf (X x (P') x A*) = Z)
3.10. — Note that this very same definition defines a filtration on any presheaf E of spectra:

WI/F(X):=colim colim E <(X x (P') x A™) — Z> .
n€A  ZcX x(P')J xA”

4. Voevodsky’s slice filtration

Suppose now § a regular noetherian scheme, and abbreviate
Ip(Sm/S) = Fp (x/Lp & (Sm/S)ns) and Ipp1(Sm/S) := Fpp1 (x/Lar & (Sm/S)ns)

Voevodsky defines the so-called slice filtration on Fppi(Sm/S), which bears some resemblance to
the usual Postnikov z-structure on spectra.

Definition 4.1. — Consider the P! suspension
251 (8/Sm/8) — Fppi(Sm/S),

and denote by Fpp1(Sm/S),, the full subcategory generated by extensions and colimits by the
essential image of £3. Now, for any 7 € Z, set

Spp1(Sm/S)s, = T2, Fppi(Sm/S)5,.

Denote by #ppi(Sm/S).,_; the full subcategory spanned by those P'-spectra B such that
Mor(A, B) =0 for any A € Fppi(Sm/S),,,.
Example 4.2. — The presheaf of spectra W”K on (Sm/S) is represented by a P! spectrum

W”BGL € Spp1(Sm/k).,,.
Definition 4.3. — We also have the adjunction
Zéom 1 SP(Sm/S) == Sppi(Sm/S): QoGom

We pull back the categories Spp1(Sm/S)s,, along TF , so that p(Sm/S) 5, is the full subcate-
gory spanned by those spectra A such that X (A) € #ppi(Sm/S),,,. Note in particular that

Sp(Sm/$) 50 = Sp(Sm/S).
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Denote by #p(Sm/S),,,_; the full subcategory spanned by those spectra B such that Mor(4, B) =
0 for any A € #p(Sm/S) 5,

The following is a result of a delooping machine for n-fold G, -loop spaces.

Lemma 4.4. — The functor QO preserves the filtrations, so that

0Z, (Spn(SmiS).,) € HpSmiS),

Lemma 4.5. — The inclusion Sppi(Sm/S),, — Fppi(Sm/S) admits a right adjoint 7. Simi-
larly, the inclusion Sppi(Sm/S).,,_ — Fppi(Sm/S) admits a right adjoint

T,y =cofib |7y, —id].
Definition 4.6. — We can use these functors to define the slice tower
T Tt T T T T T
and its subquotients, the slice functors
0, =Ty Ty
The following result will be a direct consequence of our main theorem.

Theorem 4.7. — Suppose S = Speck. Then the O-slice 0,(1) of the sphere spectrum is the motivic
Eilenberg-Mac Lane spectrum HZ.

Corollary 4.8. — The O-slice 0,BGL of BGL is the motivic Eilenberg-Mac Lane spectrum HZ.

Proof. — The unit map 1 — BGL induces a map
HZ =o041) — 0,BGL.

Since HZ € Sppi1(Sm/k)o, it’s casy to see that it suffices to show that
0 HZ —QF 0,BGL

is an equivalence of #p(Sm/k). Note that HZ = QY HZ, since weight zero motivic cohomology

H(X,Z(0) = {g ifi=0

else

for smooth connected k-schemes.
Now we’re reduced to showing that

S*BGL_ € Sp(Sm/S)s,.

So the claim is that for any N > k& > 0, the spectrum ~*°G(k, N) lies in #p(Sm/S) ;. For this,
we find a divisor with normal crossings in G¢(m2,7) whose complement is affine N-space, and
we employ homotopy purity. O
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Corollary 4.9. — The E, page of the spectral sequence associated to the slice filtration
. — 1y, BGL— 1, BGL— 7, BGL— --- — BGL
can be written as
Ept = H'™(X,Z(~1)) = [Z2X,, 5 AG'™ AoBGL(X)] = K™+ (X).
4.10. — Note that even though the filtration on the P! spectrum BGL is biinfinite, the induced
filtration F*K(X) on the spectrum K(X) is finite, since
7, P K(X)=[53X,, $? AGM ABGL] ~ [S™X,,$” AGY AQZ ., BGL].

5. Comparison theorems

Now we wish to describe the relations among Grayson’s filtration, Voevodsky’s slice filtration,
and the motivic Eilenberg-Mac Lane spectrum. Fix a perfect field k.

Theorem 5.1. — The natural morphism W”BGL — 1., BGL is an equivalence.

Proof. — It’s enough to find a map 7., BGL — W”BGL that factors the counit 7, ,BGL — BGL,
and for this, it suffices to show that the composite 7., BGL — W%”BGL is zero.

To finish the proof, one employs a somewhat subtle geometric argument (and moving lemma)
to finish the proof. O

Notation 5.2. — Recall that we have the co-category
Mor(Sm/k) = Fppi (LyZ, (Sm/k)y;,)

of P'-spectra in Al-local presheaves with transfer on Sm/k, and we have an adjunction
T Sppi(Sm/k) == Mot(Sm/k): F .

We defined:
HZ:=7(1).

Theorem 5.3. — The slice endofunctors o, on Sp(Sm/k) factor as # os, for a functor
s, Sppi1(Sm/k) — Mot(Sm/k).
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