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Abstract. In a previous paper we lifted Charles Rezk’s complete Segal model

structure on the category of simplicial spaces to a Quillen equivalent one on
the category of “relative categories.” Here, we characterize simplicial local-

ization functors among relative functors from relative categories to simplicial

categories as any choice of homotopy inverse to the delocalization functor of
Dwyer and the second author. We employ this characterization to obtain a

more explicit description of the weak equivalences in the model category of

relative categories mentioned above by showing that these weak equivalences
are exactly the DK-equivalences, i.e. those maps between relative categories

which induce a weak equivalence between their simplicial localizations.

1. An overview

We start with some preliminaries.

1.1. Relative categories. As in [BK] we denote by RelCat the category of
(small) relative categories and relative functors between them, where by a relative
category we mean a pair (C,W ) consisting of a category C and a subcategory
W ⊂ C which contains all the objects of C and their identity maps and of which
the maps will be referred to as weak equivalences and where by a relative func-
tor between two such relative categories we mean a weak equivalence preserving
functor.

1.2. Rezk equivalences. In [BK] we lifted Charles Rezk’s complete Segal model
structure on the category sS of (small) simplicial spaces (i.e. bisimplicial sets) to a
Quillen equivalent model structure on the category RelCat (1.1). We will refer to
the weak equivalences in both these model structures as Rezk equivalences and
denote by both

Rk ⊂ sS and Rk ⊂ RelCat

the subcategories consisting of these Rezk equivalences.

1.3. Homotopy equivalences between relative categories. A relative functor
f : X → Y between two relative categories (1.1) is called a homotopy equiva-
lence if there exists a relative functor g : Y → X (called a homotopy inverse
of f) such that the compositions gf and fg are naturally weakly equivalent (i.e.
can be connected by a finite zigzag of natural weak equivalences) to the identity
functors of X and Y respectively.
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1.4. DK-equivalences. A map in the category SCat of simplicial categories (i.e.
categories enriched over simplicial sets) is [Be1] called a DK-equivalence if it
induces weak equivalences between the simplicial sets involved and an equivalence
of categories between their homotopy categories, i.e. the categories obtained from
them by replacing each simplicial set by the set of its components.

Furthermore a map in RelCat will similarly be called a DK-equivalence if its
image in SCat is so under the hammock localization functor [DK2]

LH : RelCat −→ SCat

(or of course the naturally DK-equivalent functors RelCat→ SCat considered in
[DK1] and [DHKS, 35.6]).

We will denote by both

DK ⊂ SCat and DK ⊂ RelCat

the subcategories consisting of these DK-equivalences.

Next we define what we mean by

1.5. Simplicial localization functors. In defining DK-equivalences in RelCat
(1.4) we used the hammock localization functor and not one of the other DK-
equivalent functors mentioned because, for our purposes here it seemed to be the
more convenient one. However in other situations the others are more convenient
and it therefore makes sense to define in general a simplicial localization functor
as any functor RelCat → SCat which is naturally DK-equivalent to the functors
mentioned above (1.4).

We also need

1.6. The relativization functor. In contrast with the situation mentioned in 1.5
there is a preferred choice for a relativization functor

R : SCat −→ RelCat

which is a kind of inverse of the simplicial localization functor, namely the delocal-
ization mentioned in [DK3, 2.5] which assigns to an object A ∈ SCat its relative
flattening which is the relative category which consists of

(i) a category which is the Grothendieck construction on A, where A is con-
sidered as a simplicial diagram of categories, and

(ii) its subcategory obtained by applying the same construction to the subob-
ject of A which consists of its objects only.

Our first main result then is

1.7. Theorem. A relative functor

(RelCat,DK) −→ (SCat,DK)

is a simplicial localization functor (1.5) iff it is a homotopy inverse (1.3) of the
realization functor (1.6)

Rel : (SCat,DK) −→ (RelCat,DK) .
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Our second main result then is

1.8. Theorem. A map in RelCat (1.1) is a Rezk equivalence (1.2) iff it is a DK-
equivalence (1.4).

We offer some

1.9. Comments on the proof of 1.7. The proof of theorem 1.7 heavily involves
some of the results of [DK1] and [DK3, 2.5] and we therefore first (in §2) review
some of the results of these papers.

In §3 we then actually prove theorem 1.7. It turns out however that in addition
to the results mentioned in §2 we need a property of the hammock localization of
which we will give two proofs. The first is a very short one based on a remark of
Toen and Vezzosi [TV, 2.2.1] involving the homotopy category of SCat. The other,
which is due to Bill Dwyer, relies heavily on [DK1] and [DK2] and is longer, but
has the “advantage” of taking place in the model category itself.

We end with some

1.10. Comments on the proof of 1.8. The proof of theorem 1.8 uses three key
facts:

(i) If f : X → Y is a homotopy equivalence between relative categories that
have the two out of three property, then a map x : X1 → X2 ∈ X is a
weak equivalence (1.1) iff the induced map fx : fX1 → fX2 ∈ Y is so.

(ii) In view of [BK, 6.1], the simplicial nerve functor N : RelCat → sS (4.1)
is a homotopy equivalence (1.2)

N : (RelCat,Rk) −→ (sS,Rk) .

(iii) In view of 1.7, the relativization functor Rel : SCat → RelCat (1.6) is a
homotopy equivalence

Rel : (SCat,DK) −→ (RelCat,DK) .

(iv) In view of [Be2, 6.3 and 8.6], the flipped nerve functor Z : SCat → sS
(4.2) is a homotopy equivalence

Z : (SCat,DK) −→ (sS,Rk) .

These results strongly suggest that theorem 1.8 should be true. To complete
the proof, one just has to show that the functors N Rel and Z : SCat → sS are
naturally Rezk equivalent. In fact we will prove the following somewhat stronger
result:

1.11. Proposition. The functors

N Rel and Z : SCat −→ sS

are naturally Reedy equivalent.

This will be established in §4.

2. Preliminaries for theorem 1.7

In preparation for the proof (in §3) of theorem 1.7 we review here some of the
results of [DK1], [DK2] and [DK3, 2.3] which will be needed.
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2.1. The hammock localization. In the proof of 1.7 we will make extensive
use of the hammock localization LH of [DK2] because, unlike the other simplicial
localization functors, it has the property that every relative category (C,W ) comes

with a natural embedding C → LH(C,W ).

2.2. The category RelSCat. This will be the category which has as its objects
the pairs (A,U) where A ∈ SCat and U ⊂ A is a subobject which contains all
the objects of A.

One then can consider RelCat as a full subcategory of RelSCat and [DK2, 2.5]

extend the functor LH : RelCat → SCat to a functor LH : RelSCat → SCat by
sending an object of RelSCat to the diagonal of the bisimplicial set obtained from
it by dimensionwise application of the hammock localization.

To deal with [DK1] and [DK3, 2.5] it will be convenient to introduce a notion of

2.3. Neglectable categories. Given an object (A,U) ∈ RelSCat (2.2) we will
say that U is neglectable in A if every map of U goes to an isomorphism in π0A.

2.4. Some results from [DK1]. [DK1, 3.4 and 5.1] then imply

(i) Let A be a category, let U and V ⊂ A be subcategories which contain all
the objects of A and let U ∪ V ⊂ A denote the subcategory spanned by U
and V and assume that V is neglectable in LH(A,U). Then the induced
map

LH(A,U) −→ LH(A,U ∪ V ) ∈ SCat

is a DK-equivalence.

Similarly [DK1, 6.4] implies

(ii) Let (B,V ) ∈ RelSCat be such that V is neglectable in B. Then the
induced map ( 2.1 and 2.2)

B −→ LH(B,V ) ∈ SCat

is a DK-equivalence.

We end with a brief review of

2.5. The relativization functor [DK3, 2.5]. The relativization functor is the
functor

Rel : SCat −→ RelCat

which sends an object A ∈ SCat to the object (bA, bid) ∈ RelCat, where bA is
the flattening of A, i.e. the category which has as objects the pairs (A,n), where A
is an object of A and n is an integer ≥ 0 and which has as maps (A1, n1)→ (A2, n2)
the pairs (a, q) where a is a map A1 → A2 ∈ An2

and q is a simplicial operator
from dimension n1 to dimension n2 and bid ∈ bA is the subcategory consisting of
the maps (a, q) for which a is an identity map.

It then was noted in [DK3, 2.5] that, for every object A ∈ SCat, there exists an
object A ∈ SCat with the same object set as bA with the following properties:

(i) There is a natural monomorphism A→ A which is a DK-equivalence.
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(ii) There is a natural embedding bA→ A with the property that (if the image
of bid ∈ bA in A is also denoted by bid) the induced map

LH(bA, bid) −→ LH(A, bid) ∈ SCat

is a DK-equivalence.
(iii) bid is neglectable in A (2.3) and hence the embedding ( 2.1 and 2.2)

A −→ LH(A, bid) ∈ SCat

is a DK-equivalence.

It follows that

(iv) A and LH RelA can be connected by the natural zigzag of DK-equivalences

A −→ A −→ LH(A, bid)←− LH(bA, bid) = LH RelA

which in turn implies that

(v) Rel is a relative functor (1.4)

Rel : (SCat,DK) −→ (RelCat,DK) .

3. A proof of theorem 1.7

To prove theorem 1.7 is suffices, in view of 2.5(iv) and (v), to prove

3.1. Proposition. Every object (C,W ) ∈ RelCat is naturally DK-equivalent to

Rel LH(C,W ).

Proof. Consider the commutative diagram in RelSCat (2.2)

(C,W )

a

((

c

��

(
bLH(C,W ), bid

)
= RLH(C,W )

e

��

b

tt(
bLH(C,W ), bid ∪W

)

d

��

(
LH(C,W ),W

)
f

((

(
LH(C,W ), bid

)
g

tt(
LH(C,W ), bid ∪W

)
in which

• c is as in 2.1, f is as in 2.5(i), d and e are as in 2.5(ii) and a is the unique
map such that da = fc, and

• the symbol ∪ is as in 2.4(i) and, in the formulas which involve two W ’s,
the second W is the image of the W in the upper left (C,W ).

Then it suffices to show that a and b are DK-equivalences in RelCat or equiva-
lently that LH a and LH b are DK-equivalences in SCat.

This is done as follows:
The map f admits a factorization(

LH(C,W ),W
) x−−→

(
LH(C,W ),W

) y−−→
(
LH(C,W ), bid ∪W

)
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in which clearly W is neglectable (2.3) in LH(C,W ) and hence, in view of 2.4(ii)

and 2.5(i), LH x is a DK-equivalence and W is neglectable in LH(C,W ). It follows

that (2.5(iii)) LH y is a DK-equivalence and hence (2.4(ii)) so is LH g.

Furthermore, in view of 2.5(ii), LH e is a DK-equivalence and consequently LH d

is a DK-equivalence and W is neglectable in LH
(
bLH(C,W ), bid

)
which implies

that LH b is a DK-equivalence.
It thus remains to prove that LH a is a DK-equivalence, but this now follows

from

3.2. Proposition. LH c : LH(C,W )→ LH
(
LH(C,W ),W

)
is a DK-equivalence.

We will give two proofs of this proposition. The first is short and is based on a
remark by Toen and Vezzosi involving the homotopy category Ho SCat of SCat.
The other, due to Bill Dwyer, is longer but takes place inside the model category
SO-Cat of the simplicial categories with a fixed object set O (in this case the object
set of C).

They both involve the commutative diagram

(i)

C //

��

LH(C,W )

��

LH(C,W )
L c // LH

(
LH(C,W ),W

)
in which the unmarked maps are as in 2.1, and

(ii) in which, in view of 2.4(ii) the right hand map is a DK-equivalence.

3.3. The short proof. In view of [TV, 2.2.1] the maps at the right and the bottom
in 3.2(i) have the same image in Ho SCat and as (3.2(ii)) the one on the right is a
DK-equivalence, so is the one at the bottom.

3.4. The longer proof. We start with a brief discussion of

(i) Homotopy pushouts
Given a model category together with a choice of cofibrant replacement

functor and a choice of functorial factorization of maps into a cofibration
followed by a trivial fibration, associate with every zigzag Y ← X → Z a
commutative diagram

Y c

∼
��

Xcoo //

}} !!

∼
��

Zc

∼
��

Y c′

∼
��

Zc′

∼
��

Y Xoo // Z

as follows. The pentagon is obtained by applying the cofibrant approxima-
tion functor and the two triangles by means of the functorial factorization.
Consequently the maps indicated ∼ are weak equivalences.

Then the pushout Y cqXc Zc is a homotopy pushout of the zigzag Y ←
X → Z.
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Clearly this construction is functorial in the sense that every diagram
of the form

Y0

y

��

X0
oo //

x

��

Z0

z

��

Y1 X1
oo // Z1

induces a map

Y c
0 qXc

0
Zc
0 −→ Y c

1 qXc
1
Zc
1

which is a weak equivalence whenever y, x and z are.

Next we discuss

(ii) The original simplicial localization functor L [DK1]
We will work in the model category SO-Cat [DK1] of the simplicial

categories with a fixed object set O (which will be the object set of C).
The weak equivalences in the model structure are the DK-equivalences.

As [DK1, 4.1] L(C,W ) is the pushout of the zigzag

F∗C ←− F∗W −→ F∗W [F∗W
−1]

and the map F∗W → F∗C is a cofibration, it follows from [DK1, 8.1] that
this pushout is also a homotopy pushout. Consequently
(∗) L(C,W ) is naturally DK-equivalent to

(F∗C)c q(F∗W )c
(
F∗W [F∗W

−1]
)c

.

Now we turn to

(iii) The hammock localization LH [DK2]

In view of [DK2, 2.5] the functors L and LH are naturally DK-equivalent
and there exists a diagram of the form

F∗C F∗Woo // F∗W [F∗W
−1] = L(W ,W )

F∗C

≈

OO

��

F∗Woo

≈

OO

//

��

LH(F∗W ,F∗W )

OO

��

C Woo // LH(W ,W )

in which the vertical maps are DK-equivalences. Hence
(∗) LH(C,W ) is naturally DK-equivalent to

Cc qW c LH(W ,W )c

and LH
(
LH(C,W ),W

)
is naturally DK-equivalent to

Cc qW c LH(W ,W )c qW c LH(W ,W )c
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in which the two middle maps W c → LH(W ,W )c are the same and
which therefore is the same as

Q = colim


LH(W ,W )c

Cc W coo

33

++

LH(W ,W )c

 .

It follows that diagram 3.2(i) is DK-equivalent to the commutative diagram

Cc //

��

Cc qW c LH(W ,W )c

u

��

Cc qW c LH(W ,W )c
v // Q

in which u is obtained by mapping the zigzag Cc ←W c → LH(W ,W )c

to the upper zigzag in the diagram whose colimit is Q and v is obtained
by mapping it to the lower zigzag.

In view of 3.2(ii) the map u is a DK-equivalence and as v = Tu where
T : Q → Q denotes the automorphism which switches the two copies of
LH(W ,W )c, so is the map v and therefore also the desired map

L c : LH(C,W ) −→ LH
(
LH(C,W ),W

)
.

4. Completion of the proof of 1.11

Before completing the proof of theorem 1.8, i.e. proving proposition 1.11, we
recall first some of the notions involved.

4.1. The simplicial nerve functor N . This is the functor N : RelCat → sS
which sends an object X ∈ RelCat to the bisimplicial set which has as its (p, q)-
bisimplices (p, q ≥ 0) the maps

p̌× q̂ −→ X ∈ RelCat

where p̌ denotes the category 0 → · · · → p in which only the identity maps are
weak equivalences and q̂ denotes the category 0 → · · · → q in which all maps are
weak equivalences.

4.2. The flipped nerve functor Z. This is the functor Z : SCat → sS which
sends an object A ∈ SCat to the simplicial space ZA of which the space in di-
mension k ≥ 0 is the simplicial set (ZA)k which is the disjoint union, taken over
all ordered sequences A0, . . . , Ak of objects of A, of the products

hom(A0, A1)× · · · × hom(Ak−1, Ak) .

4.3. The opposite Γop of the category of simplices functor Γ. This is the
functor Γop : S → Cat which sends a simplicial set X ∈ S to its category of
simplices, i.e. the category which has

(i) as objects the pair (p, x) consisting of an integer p ≥ 0 and a p-simplex of
X, and

(ii) as maps (p1, x1) → (p2, x2) the simplicial operators t from dimension p1
to dimension p2 such that tx1 = x2.
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We also need

4.4. Some auxiliary notions. For every object A ∈ SCat, denote

• by YA the simplicial diagram of categories of which the category (YA)k
in dimension k ≥ 0 has as objects the sequences of maps in bA (1.6) of the
form

(p0, A0)
(t1,a1)

// · · ·
(tk,ak)

// (pk, Ak)

and as maps the commutative diagrams in bA of the form

(p0, A0)
(t1,a1)

//

(u0,id)

��

· · ·
(tk,ak)

// (pk, Ak)

(uk,id)

��

(p′0, A0)
(t′1,a

′
1) // · · ·

(t′k,a
′
k)// (p′k, Ak)

and

• by YA ⊂ YA the subobject of which the category (Y A)k in dimension
k is the subcategory of (Y A)k consisting of the above maps for which the
ti’s and the t′i’s are identities and hence all pi’s are the same, all p′i’s are
the same and all ui’s are the same.

Then there is a strong deformation retraction of YA onto YA which to each
object of YA as above assigns the map

(p0, A0)
(t1,a1)

//

(tk···t1,id)
��

· · ·
(tk,ak)

// (pk, Ak)

(id,id)

��

(pk, A0)
(id,tk···t1a1)

// · · ·
(id,ak)

// (pk, Ak)

the existence of which implies that

(i) the inclusion YA ⊂ YA is a dimensionwise weak equivalence of categories.

One also readily verifies that there is a canonical 1-1 correspondence between
the objects of (YA)k and the simplices of (ZA)k (4.2) and that in effect

(ii) there is a canonical isomorphism YA ≈ ΓopZA (4.3).

Now we are ready for the

4.5. Completion of the proof. Let n : Cat→ S denote the classical nerve func-
tor.

Then clearly N RelA = nYA (4.4) and if one defines N RelA ⊂ N RelA by
N RelA = nYA, then it follows from 4.4(i) that

(i) the inclusion N RelA→ N RelA ∈ sS is a Reedy equivalence.

Moreover it follows from 4.4(ii) that

(ii) there is a canonical isomorphism N RelA ≈ nΓopZA

and to complete the proof of proposition 1.11 and hence of theorem 1.8 it thus
suffices, in view of the fact that clearly

(iii) the functors nΓop and nΓ: S → S (4.3) are naturally weakly equivalent,

to show that

(iv) there exists a natural Reedy equivalence nΓZA→ ZA ∈ sS.



10 C. BARWICK AND D. M. KAN

But this follows immediately from the observation of Dana Latch [L] (see also
[H, 18.9.3]) that there exists a natural weak equivalence

nΓ −→ 1 .
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