A NOTE ON STABLE RECOLLEMENTS

CLARK BARWICK AND SAUL GLASMAN

ABSTRACT. In this short étude, we observe that the full structure of a recolle-
ment on a stable co-category can be reconstructed from minimal data: that of
a reflective and coreflective full subcategory. The situation has more symmetry
than one would expect at a glance. We end with a practical lemma on gluing
equivalences along a recollement.

Let X be a stable co-category and let U be a full subcategory of X that is stable
under equivalences and is both reflective and coreflective — that is, its inclusion
admits both a left and a right adjoint. We’ll denote the inclusion functor U C X
by j. and its two adjoints by j* and 7%, so that we have a chain of adjunctions
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Let Z" C X denote the right orthogonal complement of U — that is, the full
subcategory of X spanned by those objects M such that Mapx (N, M) = « for every
N € U. Dually, let ZY C X denote the left orthogonal complement of U — that is,
the full subcategory of X spanned by those objects M such that Mapx (M, N) = x
for every N € U. The inclusions of Z" C X and ZY C X will be denoted i, and 4y
respectively.

Warning 1. Our notation is chosen to evoke a geometric idea, but the role of open
and closed is reversed from recollements that arise in the theory of constructible
sheaves.

In our thinking, we imagine X as the oo-category Dgeon(X) of quasicoherent
complexes over a suitably nice scheme X, which is decomposed as an open sub-
scheme U together with a closed complement Z. In this analogy, we think of U as
the oco-category of quasicoherent modules on U, embedded via the (derived) push-
forward. The subcategory ZV is then the oco-category of quasicoherent complexes
on X that are set-theoretically supported on Z, and the subcategory Z”" is the
oo-category of quasicoherent complexes on X that are complete along Z.

Lemma 2. In this situation, Z" is reflective and ZV is coreflective.

Proof. Denote by & the cofiber of the counit j,j* — idx. Then x(X) C Z", so we
factor

R = iAiA
with " € Fun(X, Z"). We claim that " is left adjoint to i. Indeed, for any M € X
and N € Z", we have a cofiber sequence of spectra

Fgn (i" M, N) ~ Fx (ini"M,inN) = Fx(M,ixN) = Fx(joj*M,inN) ~ 0.

The proof that ZV is coreflective is dual, and we’ll denote the right adjoint of i
by V. [
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Lemma 3. In the sense of (2, Df. 3.4],
6({0}) =2Z", 6({1}) = U, 6(A") =X, &(0) =0
is a stratification of X along A'.
Proof. After unravelling the notation, one sees that this amounts to the following
two claims.
e First, i"j.5* = 0. This point is obvious.

e The usual fracture square
id —— iad"
l |
Gugt b Gugini
is cartesian. To see this, take fibers of the horizontal maps to get the map
Jxd = 33357
which is an equivalence since j*j, is homotopic to the identity. ([l

Remark 4. Conversely, if & is a stratification of X along A!, then &({0}) is core-
flective as well as reflective. Indeed, the fracture square together with the argument
of Lm. [2f shows that the fiber of id — £; defines a right adjoint to the inclusion of

S({0}).
Lemma 5. In the sense of [3, Df. A.8.1], X is a recollement of U and Z".

Proof. The only claim that isn’t obvious is point €): that j* and " are jointly con-
servative. But since they are exact functors of stable co-categories, this is equivalent
to the claim that if j7*M and i"M are both zero, then M is zero, and this is clear
from the fracture square. g

Remark 6. Again there’s a converse; indeed, if a stable co-category X is a recolle-
ment of U and Z, then U is coreflective [3, Rk. A.8.5]. We thus conclude that the
following three pieces of data are essentially equivalent:

e reflective and coreflective subcategories of X,
e stratifications & along Al in the sense of [2, Df. 3.4] with &(A!) = X, and
e recollements of X in the sense of |3, Df. A.8.1].

As we have described this structure, there’s a surprising intrinsic symmetry that
traditional depictions of recollements don’t really bring out:

Proposition 7. The functors i"iy and iVin define inverse equivalences of cate-
gories between Z™ and Z" .

This proposition is an extreme abstraction of prior results, such as those of [1],
giving equivalences between categories of complete objects and categories of torsion
objects.

Proof. Let’s show that the counit map
n: iAiviv’L'/\ —id
is an equivalence; the other side will of course be dual. The counit factors as

DA e W\ 10 A - m . .
PNy = iNiA — id,
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but of course 7; is an equivalence since i, is fully faithful. But n fits into a cofiber
sequence

A Ve MO A A s
PNy in —= A = G i,

and the final term is zero since i"j, = 0. O

Finally, we give a useful criterion for when a morphism of recollements gives rise

to an equivalence, the proof of which is unfortunately a little more technical than
the foregoing.

Proposition 8. Let X and X' be stable oco-categories with reflective, coreflective
subcategories U C X and U’ C X' and ancillary subcategories

Z'CX, 2" CX, () X, () cX.
Suppose F: X =Y is a functor with

F(U)C U, F(Z") C(Z)", F(zZY)c(Z).
Suppose moreover that Fly and at least one of Flzr and F|zv is an equivalence.
Then F is an equivalence.
Proof. Let’s suppose that F'|z+ is an equivalence; once again, the other case is dual.
Lemma 9. Set

Z/\ \LX U= Z/\ Xx FUH(AI,X) Xx U

be the co-category of morphisms in X whose source is in Z" and whose target is in
U; we claim that the functor

k:Z" |x U—X
that maps a morphism to its cofiber is an equivalence.
Proof. The functor k is really constructed as a zigzag

7" x UL E -5 X,

where E is the oo-category of cofiber sequences M — N — P in X for which
(M — N) € Z" |x U. The leftward arrow is a trivial Kan fibration. We’d like
to prove that the right hand arrow, ¢, is also a trivial Kan fibration. It’s clearly a
cartesian fibration, and so it suffices to show that each fiber of ¢ is a contractible
Kan complex.

The fiber of ¢t over P is the co-category of cofiber sequences

M—-N—=P

with M € Z" and N € U. Since fibers are unique, this is equivalent to the oo-
category of morphisms ¢: N — P with N € U and fib(¢) € Z". But fib(¢) €
Z" if and only if ¢ exhibits N as the U-colocalization of P, and such a ¢ exists
uniquely. (I

Corollary 10. The co-category X is equivalent to the oo-category of sections of
the map

p: C— Al

where C C X x Al is the full subcategory spanned by objects of Z" x {0} or U x
{1}. O
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Observe here that p is a cocartesian fibration, and the cocartesian edges corre-
spond to morphisms f: M — N in X which exhibit N as the U localization of
M.

Now we finish the proof of Pr. |8} In fact, F': X — X’ induces a functor over A'

F:C—>C,
where C’ C X’ x Al is the full subcategory spanned by objects of (Z’)" x {0} or
U’ x {1}. By hypothesis, F' induces equivalences on the fibers over {0} and {1}.
If F moreover preserves cocartesian edges, we’ll be able to conclude that F' is an
equivalence of co-categories, inducing an equivalence on oo-categories of sections,
whence the result.

The claim that F' preserves cocartesian edges is equivalent to the claim that the
naturally lax-commutative square

s
AL §i

Flzn | |Fto

ZI A U/

( ) (j/)*(i/)/\

is in fact commutative up to equivalence. In fact, the stronger claim that the lax-
commutative square

b QAN |,

A4 b

X/ ﬁ U/
(4"
commutes up to equivalence is equivalent to the claim that F' takes j*-equivalences
to (j')*-equivalences. But this is the case if and only if F' takes left orthogonal
objects to U — that is, objects of ZY — to left orthogonal objects to U’ — that is,
objects of (Z')V. Since this was one of our hypotheses, the proof is complete.
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