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Abstract. We solve a problem proposed by Khovanov by constructing, for any set of
primes 𝑆, a triangulated category (in fact a stable∞-category) whose Grothendieck group is
𝑆−1Z. More generally, for any exact∞-category 𝐸, we construct an exact∞-category 𝑆−1𝐸
of equivariant sheaves on the Cantor space with respect to an action of a dense subgroup of
the circle. We show that this∞-category is precisely the result of categorifying division by
the primes in 𝑆. In particular, 𝐾𝑛(𝑆−1𝐸) ≅ 𝑆−1𝐾𝑛(𝐸).

It is a peculiar fact that rationalized algebraic 𝐾-groups have largely remained out of
reach of algebraic techniques. For example, the rationalized 𝐾-groups of a number field 𝐹
were computed by Borel [4]: for 𝑛 ≥ 2,

dim𝐾𝑛(𝐹) ⊗Q =
{{
{{
{

0 if 𝑛 ≡ 0 mod 2;
𝑟1 + 𝑟2 if 𝑛 ≡ 1 mod 4;
𝑟2 if 𝑛 ≡ 3 mod 4,

where 𝑟1 is the number of real places and 𝑟2 is the number of complex places of 𝐹. But Borel’s
proof depends upon a delicate analysis of invariant differential forms on the Borel–Serre
compactification of a symmetric space. As far as we know, no algebraic approach to this
computation has appeared in the literature.

For function fields, the situation is at least as dire. For example, we have the following.

Conjecture (Parshin). If𝑋 is a smooth projective variety over a finite field, then𝐾𝑛(𝑋)⊗Q = 0
for any 𝑛 ≥ 1.

But only when the dimension of𝑋 is 0 or 1 is this assertion known.
The task of this paper is to categorify rationalization, in order to get a more explicit grasp

on rational 𝐾-theory classes. That is, we introduce explicit categories of divisible objects
whose 𝐾-theory gives the rational 𝐾-theory directly.

More precisely, if 𝑆 is a set of prime numbers, then for any exact∞-category 𝐸 (in par-
ticular, for any exact ordinary category or any stable∞-category [2]), we construct here an
exact∞-category 𝑆−1𝐸 such that 𝐾(𝑆−1𝐸) ≃ 𝑆−1𝐾(𝐸) as spectra, and, consequently,

𝐾∗(𝑆−1𝐸) ≅ 𝑆−1𝐾∗(𝐸)

as graded abelian groups.
When 𝐸 is an idempotent-complete stable∞-category, we can offer an explicit – though

perhaps unwieldy – characterization of 𝑆−1𝐸: it is an∞-category of what we call 𝑆-divisible
objects. These are sequences {𝑋𝑖} of objects𝑋𝑖 of Ind𝐸, indexed over the various products 𝑖
of the primes in 𝑆, along with suitably compatible identifications, when𝑚 divides 𝑛, between
the object 𝑋𝑚 and the 𝑛/𝑚-fold direct sum 𝑋𝑛 ⊕ 𝑋𝑛 ⊕ ⋯ ⊕ 𝑋𝑛, all subject to a finiteness
condition.

Our main theorem goes a step still further, and identifies 𝑆−1𝐸 as an ∞-category of
sheaves of objects of Ind𝐸 on the Cantor space 𝛺 that are equivariant with respect to a free
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action (Cnstr. 4.2) of the 𝑆-adic circle

T𝑆 ≔ 𝑆−1Z/Z

on𝛺. When 𝐸 is the∞-category of coherent complexes on a reasonable scheme𝑋, we may
think of 𝛺 as an affine scheme with its 𝑆-adic circle action, and we prove:

Theorem. One has an equivalence of∞-categories

𝑆−1IndCoh(𝑋) ≃ IndCohT𝑆 (𝑋 × 𝛺)

between the 𝑆-divisible ind-coherent complexes on 𝑋 and the∞-category of T𝑆-equivariant
ind-coherent complexes on𝑋 × 𝛺.

We deduce that

𝑆−1𝐺𝑛(𝑋) ≅ 𝐺T𝑆𝑛 (𝑋 × 𝛺) , and in particular 𝐺𝑛(𝑋) ⊗Q ≅ 𝐺Q/Z𝑛 (𝑋 × 𝛺) ;

that is, the rationalized 𝐺-theory of𝑋 is theQ/Z-equivariant 𝐺-theory of𝑋 × 𝛺.
This paper thus solves problems posed by Khovanov [6, 2.3 and 2.4], who sought such

a “categorification of division.” In particular, he asked for a triangulated category whose
Grothendieck group isQ, and more generally, one whose Grothendieck group is𝑚−1Z for
an integer 𝑚. In fact, for any field 𝑘, the stable ∞-category QCoh𝑚

−1Z/Z(Spec 𝑘 × 𝛺) of
𝑚−1Z/Z-equivariant sheaves of complexes of 𝑘-vector spaces on 𝛺 is the localization of the
derived category of 𝑘 away from𝑚. The compact objects therein have not only the desired
Grothendieck group𝑚−1Z, but one even has

𝑚−1𝐾𝑛(𝑘) ≅ 𝐺𝑚
−1Z/Z
𝑛 (Spec 𝑘 × 𝛺).

The slogan is thus: Vector spaces with rational dimension are circle-equivariant sheaves of
complexes on the Cantor space.

Finally, though our motivation was to contemplate rational algebraic 𝐾-theory, we must
note that nowhere have we really used anything special about the functor 𝐾, save only
that it preserves finite products and filtered colimits. Any functor with this property (e.g.,
topological Hochschild homology) can replace 𝐾 in the assertions above. This reflects the
fact that our procedure really inverts the primes in 𝑆 at the categorical level.

Acknowledgements. We thank R. Bezrukavnikov for a helpful conversation about this pa-
per and for pointing us to Khovanov’s conjecture. We thank A. Putman for an encouraging
conversation.

1. Localizations

1.1. Recollection. An abelian group 𝐸 is 𝑆-local if and only if, for product 𝑘 of primes in 𝑆,
the multiplication by 𝑘map 𝑘 ∶ 𝐸 𝐸 is an isomorphism.

More generally, we have the following.

1.2.Definition. Suppose 𝐶 an∞-category with direct sums. For any object 𝐸 of 𝐶, and for
any natural number 𝑘, write 𝑘𝐸 for the 𝑘-fold direct sum 𝐸 ⊕ 𝐸 ⊕⋯ ⊕ 𝐸. The composite

𝐸 𝑘𝐸 𝐸

of the codiagonal followed by the diagonal deserves the name multiplication by 𝑘. We will
say that 𝐸 is 𝑆-local if and only if, for any product 𝑘 of primes in 𝑆, the multiplication by 𝑘
map 𝑘 ∶ 𝐸 𝐸 is an equivalence.

This recovers, e.g., the notion of 𝑆-locality for spectra.
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1.3.Notation. Let𝛷𝑆 denote the ordinary category in which an object is a (positive) natural
number that is a product of elements of 𝑆, and a morphism𝑚 𝑛 is a natural number 𝑘
such that 𝑛 = 𝑚𝑘.

We will show in §2 that every object 𝐸 of an∞-category 𝐶 with direct sums determines
a functor

𝐸[𝑆] ∶ 𝛷𝑆 𝐶
that carries every object to 𝐸 and every morphism 𝑘 ∶ 𝑚 𝑛 to the morphism 𝑘 ∶ 𝐸 𝐸,
as well as a dual diagram

𝐸[𝑆]∨ ∶ 𝛷op𝑆 𝐶
that carries every object to 𝐸 and every morphism 𝑘 ∶ 𝑚 𝑛 to the morphism 𝑘 ∶ 𝐸 𝐸.

The proof of the following is easy.

1.4. Proposition. Suppose 𝐶 an ∞-category that admits direct sums and filtered colimits.
Then the following are equivalent for an object 𝐸 of 𝐶.
▶ The object 𝐸 is 𝑆-local.
▶ The functor 𝐸[𝑆] is essentially constant.
▶ The natural map 𝐸 colim𝐸[𝑆] is an equivalence in 𝐶.

1.5. Notation. If 𝐶 is an∞-category that admits direct sums and filtered colimits, then we
write 𝑆−1 ∶ 𝐶 𝐶 for the functor 𝐸 colim𝐸[𝑆].

1.6.Warning. It is tempting to believe that 𝑆−1 ∶ 𝐶 𝐶 is a localization functor onto the
full subcategory spanned by the 𝑆-local objects. This is true when 𝐶 is Ab or Sp. However, it
isn’t true in general: see Warning 3.11. In order for 𝑆−1𝐸 to be 𝑆-local, it is sufficient that for
any 𝑝 ∈ 𝑆, there exist𝑁 ≥ 2 such that the cyclic permutation of 𝑝𝑁 ∶ 𝐸 𝐸 is homotopic
to the identity.

2. The effective Burnside∞-category and the functors 𝐸[𝑆] and 𝐸[𝑆]∨

We give a precise construction of the functors 𝐸[𝑆] and 𝐸[𝑆]∨ for any object 𝐸 of any
∞-category 𝐶 that admits direct sums and filtered colimits.

To this end, let 𝐴eff(Fin) denote the effective Burnside∞-category of finite sets [3]. (This
is in fact a 2-category.) We have shown that this is the Lawvere theory of 𝐸∞ objects. That
is, for any∞-category𝐷 with all finite products, there is an equivalence

CAlg(𝐷×) ≃ Fun×(𝐴eff(Fin),𝐷),

where Fun× denotes the∞-category of product-preserving functors. Equivalently, 𝐴eff(Fin)
can be identified with the∞-category of free, finitely generated 𝐸∞ spaces.

Now since 𝐶 has direct sums, every object is an 𝐸∞-algebra in a unique way. That is, the
forgetful functor

CAlg(𝐶×) 𝐶
is an equivalence. Consequently, the functor

Fun×(𝐴eff(Fin),𝐶) 𝐶

given by evaluation at the one-point set ⟨1⟩ ≔ {0} is an equivalence. Select, once and for all,
a homotopy inverse 𝐹 to this equivalence. Now in order to construct 𝐸[𝑆] and 𝐸[𝑆]∨ for any
object 𝐸 of 𝑆, we need only to define a functor

𝑀𝑆 ∶ 𝛷𝑆 𝐴eff(Fin)



4 CLARK BARWICK, SAUL GLASMAN, MARC HOYOIS, DENIS NARDIN, AND JAY SHAH

that carries each natural number in 𝛷𝑆 to the singleton, and every map 𝑚 𝑛 given by
𝑛 = 𝑚𝑘 to the span

⟨1⟩ ⟨𝑘⟩ ⟨1⟩,
where

⟨𝑘⟩ ≔ {0, 1,… , 𝑘 − 1} .
We then obtain 𝐸[𝑆] as the composite 𝐹(𝐸) ∘𝑀𝑆, and we obtain 𝐸[𝑆]∨ as the composite
𝐹(𝐸) ∘𝐷 ∘𝑀op

𝑆 , where𝐷 ∶ 𝐴eff(Fin)op ∼ 𝐴eff(Fin) is the duality functor.
In fact it will be useful to define a functor

𝑀𝑆 ∶ 𝑂(𝛷𝑆) 𝐴eff(Fin) ,

where 𝑂(𝛷𝑆) ≔ Fun(𝛥1,𝛷𝑆) is the arrow category of 𝛷𝑆, such that the precomposition of
𝑀̃𝑆 with the inclusion 𝛷𝑆 ⊆ 𝑂(𝛷𝑆) sending every object to the identity on it is the required
functor𝑀𝑆.

To define𝑀𝑆 carefully, if 𝑛 = 𝑚𝑘, then we define two maps

𝑝𝑚|𝑛 ∶ ⟨𝑛⟩ ⟨𝑚⟩ and 𝑗𝑚|𝑛 ∶ ⟨𝑛⟩ ⟨𝑚⟩

by the formulas

𝑝𝑚|𝑛(𝑖) ≔ ⌊
𝑖
𝑘
⌋ and 𝑗𝑚|𝑛(𝑖) ≔ 𝑖 mod 𝑚.

Now for any 𝑝-simplex

(𝑚0|𝑛0)|(𝑚1|𝑛1)|⋯ |(𝑚𝑝|𝑛𝑝)

of 𝑂(𝛷𝑆) (by which we mean that𝑚𝑠|𝑚𝑠+1 and 𝑛𝑡|𝑛𝑡+1) in which 𝑛𝑡 = 𝑘𝑠,𝑡𝑚𝑠, the 𝑝-simplex

𝑀𝑆((𝑚0|𝑛0)|(𝑚1|𝑛1)|⋯ |(𝑚𝑝|𝑛𝑝)) ∈ 𝐴eff(Fin)𝑝
will be the diagram

⟨𝑘0,𝑝⟩

⟨𝑘0,𝑝−1⟩ 󳴪 ⟨𝑘1,𝑝⟩

⋰ 󳴪 ⋱⋱ 󳴪 ⋱

⟨𝑘0,2⟩ 󳴪 ⟨𝑘1,3⟩ 󳴪 ⟨𝑘𝑝−3,𝑝−1⟩ 󳴪 ⟨𝑘𝑝−2,𝑝⟩

⟨𝑘0,1⟩ 󳴪 ⟨𝑘1,2⟩ 󳴪 ⋱⋱ 󳴪 ⟨𝑘𝑝−1,𝑝−2⟩ 󳴪 ⟨𝑘𝑝−1,𝑝⟩

⟨𝑘0,0⟩ ⟨𝑘1,1⟩ ⟨𝑘2,2⟩ ⟨𝑘𝑝−2,𝑝−2⟩ ⟨𝑘𝑝−1,𝑝−1⟩ ⟨𝑘𝑝,𝑝⟩

in which the backward pointing maps are all of the form

𝑝𝑘𝑖,𝑗|𝑘𝑖+1,𝑗 ,

and the forward pointing maps are all of the form

𝑗𝑘𝑖,𝑗|𝑘𝑖,𝑗+1 .

It’s a trivial matter to see that this assignment defines a simplicial map

𝑀𝑆 ∶ 𝑂(𝛷𝑆) 𝐴eff(Fin),

as desired.
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3. Localizing exact∞-categories

Now we apply this when 𝐶 = Exact∞, the∞-category of exact∞-categories. In particu-
lar, since exact∞-categories form an∞-category with direct sums, we may form, for any
exact∞-category 𝐸, the exact∞-category 𝑆−1𝐸 via this filtered colimit. Since the multipli-
cation by 𝑘 functor 𝑘 ∶ 𝐸 𝐸 induces the the multiplication by 𝑘map 𝑘 ∶ 𝐾(𝐸) 𝐾(𝐸),
and since algebraic 𝐾-theory preserves filtered colimits, we deduce that

𝐾(𝑆−1𝐸) ≃ 𝑆−1𝐾(𝐸).
Thequestion, now, iswhether our exact∞-category 𝑆−1𝐸 is at all understandable.Happily,

the answer is yes: we can identify 𝑆−1𝐸 with an∞-category of certain graded objects, not
quite of 𝐸, but of a natural enlargement thereof, where wemight find suitably infinite objects
for our analysis.

3.1. Definition. If 𝐸 is an essentially small exact∞-category, then a large object of 𝐸 is a
functor 𝐸op Top that carries any zero object in 𝐸 to a terminal object and any admissible
pushout/pullback square

𝑋 𝑌

𝑋′ 𝑌′

to a pullback square. We write 𝑃+(𝐸) for the full subcategory of Fun(𝐸op,Top) spanned by
the large objects of 𝐸.

It is easy to check that 𝑃+(𝐸) is a compactly generated, additive∞-category, and that the
Yoneda embedding of 𝐸 into 𝑃+(𝐸) carries admissible pushout/pullback squares to squares
that are both pushout and pullback squares. We may declare a morphism of 𝑃+(𝐸) to be
ingressive or egressive if and only if it is a filtered colimit of ingressive or egressivemorphisms
of 𝐸, respectively. With this structure, 𝑃+(𝐸) is an exact∞-category, and 𝑗+ ∶ 𝐸 𝑃+(𝐸) is
exact.

Furthermore, 𝑃+(𝐸) has the following universal property: for any additive, presentable
∞-category𝐷, precomposition with 𝑗+ defines an equivalence

Fun𝐿(𝑃+(𝐸),𝐷) ∼ FunExact∞ (𝐸,𝐷).

3.2. Example. When𝐸 is the ordinary category of finitely generated projectivemodules over
a commutative ring 𝑅, then 𝑃+(𝐸) is equivalent to the∞-category Ch+(𝑅) of nonnegative
chain complexes of 𝑅-modules.

3.3. Example. More generally, when 𝐸 has its minimal exact structure, so that the only
ingressive morphisms are summand inclusions, the∞-category 𝑃+(𝐸) is the nonabelian
derived∞-category of 𝐸.

3.4. Example. When𝐸 is a stable∞-category with its maximal exact structure, so that every
morphism is ingressive, the∞-category 𝑃+(𝐸) is simply Ind(𝐸).

3.5. Definition. Suppose again 𝐸 an exact∞-category and 𝑆 a set of primes. Then an 𝑆-
divisible large object of 𝐸 is an object of the (homotopy) limit of the functor

𝑃+(𝐸)[𝑆]∨ ∶ 𝛷
op
𝑆 Cat∞.

We writeDiv𝑆(𝑃+(𝐸)) for this homotopy limit.
More concretely, an 𝑆-divisible object is a sequence of large objects

{𝑋𝑖}𝑖∈𝛷𝑆
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along with equivalences
𝜌𝑖,𝑗 ∶ 𝑋𝑖 ∼ 𝑗𝑋𝑖𝑗

for any 𝑖, 𝑗 ∈ 𝛷𝑆, which fit together to give, for every 𝑖0, 𝑖1,… , 𝑖𝑛 ∈ 𝛷𝑆, an 𝑛-simplex

𝑋𝑖0
∼ 𝑖1𝑋𝑖0𝑖1

∼ ⋯ ∼ 𝑖1𝑖2⋯ 𝑖𝑛𝑋𝑖0𝑖1⋯𝑖𝑛
of equivalences.

3.6. Notation. For any𝑚 ∈ 𝛷𝑆, we have the projection

𝜔𝑚 ∶ Div𝑆(𝑃+(𝐸)) 𝑃+(𝐸),

given by evaluation at𝑚 ∈ 𝛷𝑆, and we also have its left adjoint 𝜎𝑚.
Given an object𝑉 of 𝐸 and a natural number𝑚, we may define an 𝑆-divisible large object

𝑉
𝑚
≔ 𝜎𝑚(𝑗+(𝑉)).

WewriteDiv𝑆(𝐸) for the full subcategory ofDiv𝑆(𝑃+(𝐸)) spanned by the objects of the form
𝑉
𝑚 .

3.7. Note that if 𝑛 = 𝑚𝑘 in 𝛷𝑆, then

𝑚𝑉
𝑛
≃ 𝑉
𝑘
,

justifying our notation.

3.8. Theorem. Suppose 𝐸 an exact ∞-category and 𝑆 a set of primes. Then the exact ∞-
category 𝑆−1𝐸 is equivalent to Div𝑆𝐸.

Proof. The∞-category 𝑆−1𝐸 is the colimit of the diagram 𝐸[𝑆] ∶ 𝛷𝑆 Cat∞. We consider
the embedding 𝐸 𝑃+(𝐸), which is visibly functorial in 𝑆 and lands in the subcategory of
compact objects. Hence the induced functor 𝑆−1𝐸 𝑆−1𝑃+(𝐸) is fully faithful and exact,
where 𝑆−1𝑃+(𝐸) is computed in the∞-category Pr𝐿.

Now 𝑆−1𝑃+(𝐸) is by definition the filtered colimit of𝑃+(𝐸)[𝑆] computed inPr𝐿, which is in
turn equivalent to the filtered limit of the adjoint diagram in Pr𝑅, which is in turn the limit in
Cat∞. The adjoint diagram is clearly 𝑃+(𝐸)[𝑆]∨, whence we find that 𝑆−1𝑃+(𝐸) ≃ Div𝑆𝑃+(𝐸).

Now the essential image of the functor is spanned by those objects that lie in the image
of an object 𝑉 of 𝐸 lying in some degree 𝑚 ∈ 𝛷𝑆. These are exactly the objects 𝑉𝑚 defined
above. �

3.9.Example. In the particular case inwhich𝐸 is an idempotent complete stable∞-category,
the∞-category 𝑆−1𝐸 ≃ Div𝑆(𝐸) is the full subcategory ofDiv𝑆(Ind(𝐸)) spanned by the com-
pact objects.

3.10. Remark. If 𝐸 is a symmetric monoidal exact∞-category (i.e., an exact∞-category
whose underlyingWaldhausen∞-category is symmetric monoidal in the sense of [1]), then
one can show that 𝑆−1𝐸 is naturally an 𝐸-module, and the functors 𝜎𝑚 ∘ 𝑗+ ∶ 𝐸 𝑆−1𝐸 are
𝐸-module functors.

3.11.Warning. We stress that 𝑆−1𝐸 will not in general be an 𝑆-local exact∞-category. In
fact, it is not hard to see that the only 𝑆-local exact∞-category is 0.
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4. Divisible objects as equivariant sheaves

In this section we will find a more geometric description of 𝑆−1𝐶 when 𝐶 is a presentable
exact category, such as 𝑃+(𝐸), and then we will cut the resulting large ∞-category back
down to size. To begin, let us describe an action of the 𝑆-adic circle group T𝑆 = 𝑆−1Z/Z on
the Cantor space 𝛺.

4.1. Notation. For any prime number 𝑝, write

𝛺𝑝 ≔ Map(N, ⟨𝑝⟩),

equipped with the product topology. This is of course a Cantor space, as is the product

𝛺𝑆 ≔∏
𝑝∈𝑆
𝛺𝑝.

(Of course𝛺𝑝 may be identified with the group Z𝑝 of 𝑝-adic integers, but we won’t use much
of the abelian group structure.)

For any nonnegative integer 𝑛, we obtain a continuous map

𝑝𝑛 ∶ 𝛺𝑝 𝛺𝑝,

which carries 𝑟 to the map given by

(𝑝𝑛𝑟)𝑖 = {
0 if 𝑖 ≤ 𝑛;
𝑟𝑖−𝑛 if 𝑖 > 𝑛.

(In other words, this is multiplication by 𝑝𝑛 in Z𝑝.) For any product 𝑚 = ∏𝑝∈𝑆 𝑝
𝜈𝑝(𝑚) of

primes in 𝑆, we therefore obtain a continuous map

𝑚 ∶ 𝛺𝑆 𝛺𝑆.

We write𝑚𝛺𝑆 ⊆ 𝛺𝑆 for the image of this map, which is again a Cantor space. There is also a
surjection 𝑓𝑝𝑛 ∶ 𝛺𝑝 𝑝𝑛𝛺𝑝 given by

𝑓𝑝𝑛 (𝑟)𝑖 = {
0 if 𝑖 ≤ 𝑛;
𝑟𝑖 if 𝑖 > 𝑛;

this extends to a surjection 𝑓𝑚 ∶ 𝛺𝑆 𝑚𝛺𝑆 for any natural number𝑚.

4.2. Construction. Of course we have the free action of the cyclic group 𝐶𝑝 on ⟨𝑝⟩, which
clearly extends to a free action of T𝑝 on 𝛺𝑝. Moreover, two elements 𝑥,𝑦 ∈ 𝛺𝑝 lie in the
same orbit if and only if 𝑓𝑝𝑛 (𝑥) = 𝑓𝑝𝑛 (𝑦) for some nonnegative integer 𝑛.

These actions together provide an action of T𝑆 ≅ ⨁𝑝∈𝑆 T𝑝 on 𝛺𝑆, and two elements
𝑥,𝑦 ∈ 𝛺𝑆 lie in the same orbit if and only if 𝑓𝑚(𝑥) = 𝑓𝑚(𝑦) for some natural number𝑚.

4.3. Proposition. Let 𝐶 be an exact presentable ∞-category (e.g. 𝑃+(𝐸) for an exact ∞-
category 𝐸). Then there is an equivalence

𝑆−1𝐶 ≃ ShT𝑆𝐶 (𝛺𝑆)

where the right hand side is the∞-category of 𝐶-valued T𝑆-equivariant sheaves on the space
𝛺𝑆, with the 𝑆-adic circle group T𝑆 acting as above.

Proof. The category 𝑆−1𝐶 is the colimit of a diagram𝛷𝑆 Pr𝐿.We can interpret the arrows
appearing in this diagram as formed via a push-pull construction

𝐶
𝜋∗
−−→ Sh𝐶 (⟨𝑛⟩)

𝜋∗−−→ 𝐶
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where 𝜋 ∶ ⟨𝑛⟩ ⟨1⟩ is the projection. But we can decouple the pullback and the pushfor-
ward by employing §2 to define a factorization of 𝛷𝑆 Pr𝐿 through a functor 𝑂(𝛷𝑆) =
Fun(𝛥1,𝛷𝑆) Pr𝐿 that carries each object (𝑚|𝑛) of 𝑂(𝛷𝑆) to the∞-category

Sh𝐶 (⟨
𝑛
𝑚
⟩) .

Precisely, we compose𝑀𝑆 with the unique functor Sh𝐶 ∶ 𝐴eff(Fin) Pr𝐿 that preserves
finite products and carries ⟨1⟩ to 𝐶 (with the direct sum symmetric monoidal structure).

Since 𝛷𝑆 is a filtered category, the inclusion 𝛷𝑆 𝑂(𝛷𝑆) is cofinal and we can compute

𝑆−1𝐶 ≔ colim
𝑚∈𝛷𝑆
𝐶 ≃ colim
(𝑚|𝑛)∈𝑂(𝛷𝑆)

Sh𝐶 (⟨
𝑛
𝑚
⟩) ≃ colim

𝑚∈𝛷𝑆
colim
𝑛∈𝛷𝑆, 𝑚|𝑛

Sh𝐶 (⟨
𝑛
𝑚
⟩)

where in the last equality we have used that the projection 𝑂(𝛷𝑆) 𝛷𝑆 sending (𝑚|𝑛) to
𝑚 is a cocartesian fibration and so we can compute colimits fiberwise. But, since colimits in
Pr𝐿 can be computed as limits in Pr𝑅, we have for any fixed𝑚 ∈ 𝛷𝑆,

colim
𝑛∈𝛷𝑆, 𝑚|𝑛

Sh𝐶 (⟨
𝑛
𝑚
⟩) = lim

𝑛∈𝛷𝑆, 𝑚|𝑛
Sh𝐶 (⟨

𝑛
𝑚
⟩) = Sh𝐶 (𝑚𝛺𝑆) .

Here, the final identification follows from the fact that the∞-category of sheaves on the
lattice of clopen sets𝑚𝛺𝑆 (i.e., the union of the lattices of subsets of ⟨ 𝑛𝑚⟩ as 𝑛 varies through
𝛷𝑆) is equivalent to the∞-category of sheaves on the topological space𝑚𝛺𝑆, because clopen
sets form a basis that is closed under finite intersections.

So we have shown that
𝑆−1𝐶 ≃ colim

𝑚∈𝛷𝑆
Sh𝐶 (𝑚𝛺𝑆) ,

where the maps in the diagram are given by the pushforward along the projection

𝑗𝑚|𝑛 ∶ 𝑚𝛺𝑆 𝑛𝛺𝑆.

But colimits in Pr𝐿 can be computed as limits in Pr𝑅 after replacing all the functors with
their right adjoints. Since 𝑗𝑚|𝑛 is étale and proper, the right adjoint of the pushforward is the
pullback. hence we can write

𝑆−1𝐶 ≃ lim
𝑚∈𝛷op𝑆

Sh𝐶 (𝑚𝛺𝑆) .

Now we observe that the map 𝑗1|𝑚 ∶ 𝛺𝑆 𝑚𝛺𝑆 is the surjection 𝑓𝑚 above. In particular
we can write

𝑆−1𝐶 ≃ lim
𝑚∈𝛷op𝑆

Sh𝐶(𝛺𝑆/𝑅𝑚) ≃ lim
𝑚∈𝛷op𝑆

lim
𝛥op

Sh𝐶 (𝑅𝑚 ×𝛺𝑆 ⋯×𝛺𝑆 𝑅𝑚) ,

where 𝑅𝑚 is the equivalence relation given by

𝑅𝑚 = {(𝑥,𝑦) ∈ 𝛺𝑆 × 𝛺𝑆 | 𝑓𝑚(𝑥) = 𝑓𝑚(𝑦)} ,

and we conclude that
𝑆−1𝐶 ≃ lim

𝛥op
Sh𝐶 (𝑅 ×𝛺𝑆 ⋯×𝛺𝑆 𝑅) ,

where 𝑅 = colim𝑚∈𝛷𝑆 𝑅𝑚. Finally, by Cnstr. 4.2, the equivalence relation 𝑅 is exactly the
equivalence relation induced on 𝛺𝑆 by the action of T𝑆. So

𝑆−1𝐶 ≃ Sh𝐶 (𝛺𝑆)ℎT𝑆 ,

as desired. �

4.4. Remark. A simple analysis of this proof shows that if 𝐶 is a presentably symmetric
monoidal exact∞-category, then the equivalence 𝑆−1𝐶 ≃ ShT𝑆𝐶 (𝛺𝑆) is an equivalence of
𝐶-modules.
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4.5. Note that since𝛺𝑆 is a compact Hausdorff space of finite covering dimension, it follows
that the corresponding∞-topos is hypercomplete.This ensures that equivalences in Sh𝐶(𝛺𝑆)
and ShT𝑆𝐶 (𝛺𝑆) can be detected on stalks.

4.6. Of course we wish to apply this to the case in which 𝐶 = 𝑃+(𝐸) for some exact∞-
category 𝐸. The full subcategory 𝑆−1𝐸 ⊂ 𝑆−1𝑃+(𝐸) can be identified with a full subcategory

ShT𝑆𝑃+(𝐸)(𝛺𝑆)
small ⊆ ShT𝑆𝑃+(𝐸)(𝛺𝑆).

The objects 𝑉𝑚 of ShT𝑆𝑃+(𝐸)(𝛺𝑆)
small can be described as follows. Form the constant sheaf

𝑉 on ⟨𝑚⟩ with the obvious 𝐶𝑚 action; call the result 𝑉 again. Now
𝑉
𝑚 is the induced T𝑆-

equivariant sheaf
T𝑆 ×𝐶𝑚 𝑉 ≅ ⨁

𝑔∈T𝑆/𝐶𝑚

𝑔⋆𝑉

on 𝛺𝑆.
Now if 𝐸 is an idempotent-complete stable∞-category, then ShT𝑆𝑃+(𝐸)(𝛺𝑆)

small is the full
subcategory of ShT𝑆Ind𝐸(𝛺𝑆) spanned by the compact objects.

If 𝐸 is a symmetric monoidal exact ∞-category, then one can show that the 𝑃+(𝐸)-
module equivalence 𝑆−1𝑃+(𝐸) ≃ Sh

T𝑆
𝑃+(𝐸)(𝛺𝑆) restricts to an 𝐸-module equivalence 𝑆−1𝐸 ≃

ShT𝑆𝑃+(𝐸)(𝛺𝑆)
small.

We now turn our attention to the𝐺-theory of a quasi-compact quasi-separated scheme𝑋.
(Everythingwill alsowork in the derived or spectral settingswith smallmodifications that are
best left to the reader.) Following Illusie, one defines the∞-category Coh(𝑋) ⊂ QCoh(𝑋)
of coherent complexes on𝑋 as follows:
(1) If𝑋 = Spec𝐴 is an affine scheme, then Coh(𝑋) is defined as the full subcategory of the

derived∞-categoryD(𝐴) spanned by those bounded complexes of𝐴-modules𝑀 such
that for any filtered diagram {𝑁𝛼}𝛼∈𝛬 of 𝐴-modules, and any integer 𝑛, the natural map

colim
𝛼∈𝛬

Map(𝑀,𝑁𝛼[𝑛]) Map(𝑀, colim
𝛼∈𝛬
𝑁𝛼[𝑛])

is an equivalence.
(2) In general, an object ofQCoh(𝑋) belongs to the subcategory Coh(𝑋) if and only if its

restriction to every affine open subscheme 𝑈 ⊂ 𝑋 belongs to Coh(𝑈). We set

IndCoh(𝑋) ≔ IndCoh(𝑋).

Recall that the 𝐺-theory of𝑋 is defined by

𝐺(𝑋) ≔ 𝐾(Coh(𝑋)).

Now recall that 𝛺𝑆 can be seen as an affine scheme (precisely as the spectrum of the ring
of locally constant Z-valued functions on 𝛺𝑆). Since

ShIndCoh(𝑋)(𝛺𝑆) ≃ IndCoh(𝑋 × 𝛺𝑆)

we can express Pr. 4.3 in a different way:

4.7. Proposition. Let 𝑋 be a quasi-compact quasi-separated scheme. There is an equivalence
of stable presentable∞-categories

𝑆−1IndCoh(𝑋) ≃ IndCoh(𝑋 × 𝛺𝑆)ℎT𝑆 .
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Following Gaitsgory [5], we may extend the definition of IndCoh to more general objects
by stipulating that the functor𝑋 IndCoh(𝑋), 𝑓 𝑓!, transform colimits into limits.
The quotient algebraic space

[(𝑋 × 𝛺𝑆) /T𝑆] ≃ 𝑋 × [𝛺𝑆/T𝑆]

can be expressed as a colimit of schemes

colim
𝑚∈𝛷𝑆
(𝑋 × 𝛺𝑆) /𝐶𝑚

in which all maps are finite étale. Since 𝑓! = 𝑓∗ for such maps 𝑓, we obtain

𝑆−1IndCoh(𝑋) ≃ IndCoh ([(𝑋 × 𝛺𝑆) /T𝑆]) .

As 𝑆−1IndCoh(𝑋) is furthermore compactly generated [7, Pr. 5.5.7.6], it is sensible to de-
fineCoh ([(𝑋 × 𝛺𝑆) /T𝑆]) as the full stable subcategory of the∞-category IndCoh ([(𝑋 × 𝛺𝑆) /T𝑆])
spanned by the compact objects. Consequently, the proposition above induces an identifica-
tion

𝑆−1Coh(𝑋) ≃ CohT𝑆 (𝑋 × 𝛺𝑆) = Coh ([(𝑋 × 𝛺𝑆) /T𝑆]) .

We thus obtain the desired identification of spectra (and even𝐾(𝑋)-modules)

𝑆−1𝐺(𝑋) ≃ 𝐺T𝑆 (𝑋 × 𝛺𝑆).

In particular, when𝑋 = Spec𝐴, then one has

𝑆−1𝐺(𝐴) ≃ 𝐺T𝑆 (𝐶(𝛺𝑆,𝐴)),

where 𝐶 denotes the ring of locally constant functions.

4.8. Remark. We caution that the algebraic space [(𝑋 × 𝛺𝑆) /T𝑆] is not perfect: compact ob-
jects such as 𝑂𝑋1 are not dualizable in the symmetricmonoidal∞-categoryQCoh ([(𝑋 × 𝛺𝑆) /T𝑆]),
and conversely the unit object is not compact. Hence, we cannot simply replace 𝐺-theory by
𝐾-theory in the above formulas.
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