THE FUNDAMENTAL GROUPOID AND THE POSTNIKOV
TOWER

18.904

1. NUMERICALLY GENERATED SPACES

Let us agree now that the word space means “topological space,” and the word
map means “continuous map.” If we wish to speak of an ordinary mapping
between sets, with no continuity demands, we will use the phrase sez map.

1.1. Definition. For any space Y, a test map is amap V — Y, where V is an
open subset of some Euclidean space RN.

Suppose X a (topological) space. A subset U C X is numerically open if for
any test map ¢: V — X, the inverse image ¢! (U) C V is open.

1.2. Lemma. Any open set of a space is numerically open; however, there exist spaces
that contain numerically open sets that are not open.

1.3. Definition. We will say that a space X is numerically generated if every
numerically open set is open.

1.4. Example. Any open subset of a Euclidean space RY is numerically generated.

1.5. Lemma. Any open subset of a numerically generated space is numerically gen-
erated.

1.6. Lemma. Suppose X and Y numerically generated spaces. Then a function
X — Y is continuous just in case,for any test map V — X, the composite V— Y

is continuous.

1.7. Proposition. 7he disjoint union of any family of numerically generated spaces
is numerically generated.

1.8. Notation. Let us write I :== [0, 1] C R.

1.9. Proposition. 7he following are equivalent for a space X.
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(1.9.1) X is numerically generated.

(1.9.2) A subset U C X is open if, for any map ¢: 1 — X, the inverse image
¢~ (U) C Lis open.

(1.9.3) A subset U C X is open if, for any map ¢: R — X, the inverse image
¢~ (U) C R is open.

1.10. Example. 7he poorly named “topologists sine curve”

{(x,7) €R* | [x# O] A [y =sin(1/x)]} U {(0,0)} C R®
is not numerically generated.

1.11. Proposition. 7he collection of numerically open subsets of a space X form a
new topology that is as fine as the original topology on X.

1.12. Definition. Suppose X a space. The set X equipped with the topology on
a space X given by the previous proposition will be called the numericalization
of X, and it will be denoted X¥. (So an open set of X* is precisely a numerically
open set of X.)

1.13. Proposition. For any space X, the space X* is numerically generated. Fur-
thermore, the identity on X is a map jx: X* — X with the following property: for
any numerically generated space T and any map g: T — X, there exists a unique
map & T — X such that the triangle

N

g

T

commiutes.

1.13.1. Corollary. For any space X, one has
(Xﬁ)ﬁ —xt
1.13.2. Corollary. For any map g: X — Y, there exists a unique map

¢iX Y
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such that following diagram commutes:

Xﬁi»Yﬁ

| |

X—Y.
g

1.14. Example. Consider Q C R with its subspace topology. Then Q is not nu-
merically generated, as Qﬁ is discrete.

1.15. Definition. Suppose that X, Y, and Z are three sets, and suppose that
p: X— Zand ¢q: Y — Z are two maps of sets. Then the subset

XxzY:={(xy) eXXxY|plx) =qy)} CXxY

is called the frber product of X and 'Y over Z. (When Z is the one-point space *,
of course X x, Y =X xY.)

Suppose X, Y, and Z numerically generated spaces, and suppose that p and
g are continuous. If we endow X x Y with the product topology, then we can
equip X X7 Y with the subspace topology. However, we will go one step further
and consider the numericalization of these topologies. We will just denote the
resulting numerically generated spaces as

XXzYCXXxY

(without any further decoration). We will call this the numerically generated

fiber product of X and Y over Z.

1.16. Notation. For any spaces X and Y, write Map(X,Y) for the set of maps
X—Y.

1.17. Proposition. Suppose that X, Y, and Z are numerically generated spaces,
and suppose that p: X — Z and q: Y — Z are two maps. Then the numerically
generated fiber product X X7 Y enjoys the following universal property: for any
numerically generated space U, the maps X X7 Y — X and X X7 Y — Y induce

a bijection

Map(U, X x7 Y) - Map(U, X) Xpap(uz) Map(U, Y).

1.18. Definition. Suppose X and Y two numerically generated spaces. For any
compact subset K C X, and any open subset W C Y, write

UK, V) :={ge€ Map(X,Y) | Vx € K, g(x) € W}.

Then we may generate a topology on Map(X,Y) by the subbase consisting of
all the sets U(K, W), called the compact-open topology. Again we will go one step
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further and consider the numericalization Map(X, Y) of this space. We will call
this the numerically generated mapping space from X to Y.

1.19. Proposition. Suppose that X, Y, and Z are numerically generated spaces.
Then there is a natural homeomorphism

Map(X x Y,Z) = Map(X, Map(Y, Z)).

2. EXISTENCE AND CONNECTEDNESS

2.1. Notation. For any set S, denote by S° the set S equipped with the discrete
topology. Note that S° is numerically generated. For any set map F: S — T,
we denote the corresponding map of spaces S° — T° by F°.

2.2. Definition. Suppose X a space. Consider the equivalence relation ~ on the
points of X generated by declaring that x ~ y if there exists a map v: [ — X
such thaty(0) = xand y(1) = y. Write 7oX for the set of equivalence classes of
points of X under this equivalence relation. The elements of 7yX will be called
path components of X. Write px for the set map X — 7(X that carries a point
of X to its equivalence class.

2.3. Example. For any set S, one has 7o(S°) = S. Any Euclidean space RN has
7[()RN = {*}

2.4. Theorem. Suppose X a numerically generated space. Then the set map px is
continuous as a map X — (7gX)°. Furthermore, it bhas the following universal
property: for any set S and any map g: X — S, there exists a unique set map
7og: X —> S such that the following diagram commutes:

"N

(ﬂoX) J 56 .

77,'0g

2.4.1. Corollary. For any map g: X — Y between numerically generated spaces,
there exists a unique set map

TTog- 7Z'0X —> 77.'0Y
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such that following diagram commutes:

X Y

| |

(7Z0X)5 (Tg)‘; (7Z'OY)5.

2.4.2. Corollary. The following are equivalent for a numerically generated space
X.

(2.4.2.1) The set noX consists of exactly one point.

(2.4.2.2) There exists a point x € X such that for any point y € X, there exists a
map v: 1 — X such that v(0) = x and y(1) = y.

(2.4.2.3) There is exactly one nonempty subset of X that is both open and closed.

2.5. Example. The (still poorly named) “topologist’s sine curve” of Ex. 1.10 satisfies
condition (2.4.2.3) but not condition (2.4.2.2).

2.6. Definition. A numerically generated space will be said to be connected if
the equivalent conditions of Cor. 2.4.2 hold.

2.7. Example. 7he empty space is not connected.

2.8. Proposition. Suppose g: X — Y a surjective map between numerically gen-
erated spaces. Then 'Y is connected if X is.

2.9. Example. For any natural number n > 1, the n-sphere
"= {xe R |||x]| = 1}

is connected. However, 8° is not connected,

2.10. Lemma. For any numerically generated space X, the set map
To idX: 7Z0X — 7Z0X
is the identity map.
2.11. Proposition. Suppose that X, Y, and Z are numerically generated spaces,

and suppose p: X — Y and q: Y — Z are two maps. Then the two set maps
70X — myZ given by mo(q o p) and (moq) o (mop) are equal.

2.11.1. Corollary. If g: X — Y is a homeomorphism between numerically gen-
erated spaces, then myg: moX — noY is a bijection.
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2.12. Example. For any integer n # 1, the Euclidean spaces R and R” are not
homeomorphic.

2.13. Example. 7he capital letters T and X are not homeomorphic.

2.14. Example. For any integer n # 1, the Euclidean spaces S' and S" are not
homeomorphic.

2.15. Proposition. For any numerically generated space X and any set S, the nu-
merically generated space Map(X, S°) is discrete.

2.15.1. Corollary. For any numerically generated spaces X and Y, the two maps
X XY — XandX x Y —Y together induce a bijection

77.'()(X X Y) = 70X X 7 Y.

2.16. Proposition. For any family {X,} of numerically generated spaces, the in-
clusions X; — | [,X; together induce a bijection

H 70(X;) = 7 (]_[ x,) .

2.17. Definition. For any two numerically generated spaces X and Y, we will
say that two maps p,q: X — Y are homotopic if the images of p and ¢ in
7o Map(X,Y) are equal. In this case we write p >~ ¢.

2.18. Lemma. Two maps p,q: X — Y are homotopic just in case there exists a
map

h: Xx1—Y
such that for any x € X, one has

h(x,0) = p(x) and  h(x, 1) = q(x).

2.19. Definition. We say thata map ¢: X— Y between numerically generated
spaces is a homotopy equivalence if there exists a map ¢ : Y — X such that both

Q/JOQSEianndgbOl/}ﬁidy.

2.20. Proposition. A homotopy equivalence X — Y between numerically gener-
ated spaces induces a bijection

7?.'0X - 77.'()Y.
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3. GROUPOIDS AND GROUPS

3.1. Notation. Suppose that X, Y, and Z are three sets, and suppose that p: X—Z
and ¢: Y — Z are two set maps. Should we need to emphasize the role of the
set maps p and ¢, we will denote the fiber product of X and Y over Z as
X x Y.
2
We will write
pr;: X X Y—X
Pl
for the projection (x, y) — x and
pr,: X X Y—Y
g
for the projection (x, y) — 7.

3.2. Definition. A groupoid I' = (M, O, s, ¢, i, ¢) consists of the following data:

(3.2.A) aset M, whose elements are called isomorphisms or paths,

(3.2.B) aset O, whose elements are called objects,

(3.2.C) two set maps s, £: M — O, which are called source and rarget, respec-
tively,

(3.2.D) aset map i: O — M, called the identity, and

(3.2.E) aset map

M X M— M,
5,0,t

called composition.
These data are subject to the following axioms.
(3.2.1) Onehassoi=roi=id.
(3.2.2) One has
soc=sopr, and toc=ropr,.

(3.2.3) If € M, then

(i(H¢)), ¢) = ¢ and (¢,i(s(¢))) = ¢.
(3.2.4) For any elements ¢, x, 1) € M such that s(¢) = #(x) and s(x) = #(),

we have
o(d, c(x, ¥)) = e(e(9, x), V).

(3.2.5) For any element ¢ € M, there exists an element ¢~' € M such that
both

s(¢) =#¢™") and H¢) =s(¢7"),
and both

are in the image of .
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3.3. Notation. In a groupoid I' = (M, O, s, £, 7, ¢), if ¢, ¢ € M are morphisms
such that s(¢) = #(v)), then we typically write
¢ov =g, ).
Furthermore, for any two objects x, y € O, we will denote by
Isomr(x, y)
for the fiber of the map (s,2): M — O x O over the point (x, y). An element
7 € Isomr(x, y) will typically be denoted

Vx>

3.4. Lemma. A groupoid is precisely the same thing as a category in which every
morphism is isomorphism.

3.5. In general, when we specify a groupoid, we simply describe the objects, we
describe the set of isomorphisms between any two objects, and, if necessary, we
describe the composition.

3.6. Example. For any set S, we obtain a groupoid S° = (S,S,id, id, id, id),
which we may call the discrete groupoid corresponding o S.

3.7. Example. We may consider the groupoid ¥ of finite sets: the objects are finite
sets, and an isomorphism
ST

is simply a bijection.

3.8. Example. If k is a field, we may consider Vect(k), the groupoid of finite di-
mensional vector spaces: the objects are finite dimensional vector spaces over k, and
an isomorphism

V=W

is simply an isomorphism of k-vector spaces.

3.9. Example. A group G gives rise to a groupoid (which we will also denote G)
(G7 *7 !7 !7 e? C)?
where x denotes a set with one element, | denotes the unique map G — *, the map
e: x — G carries the unique element of * to e € G, and the map
c:GxG—G
is given by (g, h) = gh. So Isomg(*, ) = G.
Every groupoid with exactly one object is of this form, so a group is nothing more
than a groupoid with exactly one object.
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3.10. Example. Suppose I' = (M, O, 5, t,i,¢) and 1" = (M, O', ¢, ¢, 7,) two
groupoids; then the product

PCxIM=MxM,0x O sxdextixiecxd),
is a groupoid.

3.11. Definition. If ' = (M, O, s, 7,7, ¢) is a groupoid and x € O an object,
then the composition law

MxM-—->M
5,0,

restricts to a group law Isomp(x, x) X Isomr(x, x) — Isomp(x, x). This group
is called the isorropy group I, of I at x.

3.12. Example. Suppose G a group, and suppose X a G-set, i.e., a set with an
action of G on the left. Write o for the action map G x X — X Then the action
groupoid is the tuple

G x X:= (G xX,X, pr,,a,ic),
where i: X — G x X is simply the map x +— (e, x), and the composition map

c: (GxX) x (GxX)—GxX

pry, X,
is given by the assignment (g, hy, b, y) — (gh, y). So for any elements x,y € X, we
may identify
Isomeux(x,7) = {g € G [ gx = y}-
The isotropy group of G % X at a point x € X is the stabilizer of x.

3.13. Definition. Suppose I' = (M, O,s,¢,i,c) and [" = (M, O, ¢, 7,7, )
two groupoids; then a morphism F: I' — I of groupoids is a pair of maps
F: M'— Mand F: O’ — O such that

Fod =50oF, Fof =toF, Fo/ =ioF,
and, for any ¢, ¢ € M with s(¢) = #(¢)), we have
F(d(¢, ) = «(F(¢), F(¥)).

Composition of morphisms of groupoids is defined in the obvious manner,
and a morphism F: I'' — T" of groupoids is said to be an isomorphism if there
exists a morphism G: I' — I of groupoids such that GoF = idv and Fo G =
idr.

3.14. Example. For any groupoidl’ and any object x thereof; the inclusionI', — "
is a morphism of groupoids.
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3.15. Notation. Suppose I' = (M, O, s,%,7,¢) and [' = (M, O, ¢, ¢,7,)
two groupoids. Then we may define a new groupoid Mor(I",I") as follows.
The objects are morphisms of groupoids I' — I', and for two morphisms

F,G: I'" — T of groupoids, let
IsomMor(p/I)(F,G) C H Isomp (Fx, Gx)
x€0O/
be the subset consisting of those tuples (7,: Fx > Gx),cor such that for any
isomorphism v: x = y of I, one has

G(v) o ny = n, 0 F(v).

3.16. Proposition. Suppose I', 1", 1" three groupoids. Then there is a natural iso-
morphism of groupoids

Mor(I'" x T',T') = Mor(I", Mor(I', T)).

3.17. Notation. Write I for the groupoid that contains two objects 0 and 1 such
that Isomg(x, y) = {*} for any x,y € {0, 1}.

3.18. Proposition. Suppose I and 1" two groupoids, and suppose F,G: " — T
two morphisms of groupoids. Then there is a natural bijection between

Isomypor(rv 1) (F,G)
and the set of morphisms of groupoids
H:I'xI—-T
such that H|(T" x {0}°) = F and H|(T" x {1}°) = G.

3.19. Definition. A morphism F: [V — I of groupoids will be said to be an
equivalence of groupoids if there exists a morphism G: I' — I of groupoids
such that both Isomye(rv 1) (idr/, G o F) and Isomyserr,r)(idr, F o G) are
nonempty. If such an equivalence exists, then I' and I" are said to be equiv-
alent.

3.20. Definition. SupposeI' = (M, O, s, 7, i, ¢) a groupoid. Consider the equiv-
alence relation ~ on the objects of I" given by declaring that x ~ y just in case
the set Isomr(x, y) is nonempty. Write 7ol for the set of equivalence classes of
objects under this equivalence relation. The elements of I" will be called con-
nected components of I'. Write pr for the set map O — 7ol that carries an
object of I to its equivalence class.

3.21. Example. For any set S, one has 7y(S°) = S. Any group G has 7oG = {*}.



THE FUNDAMENTAL GROUPOID AND THE POSTNIKOV TOWER I1

3.22. Theorem. For any groupoid I, the set map pr extends uniquely to a mor-
phism of groupoids T — (7o1')°. Furthermore, it has the following universal prop-
erty: for any set S and any morphism of groupoids F: I' — SO, there exists a unique
set map noF: wol' — S such that the following diagram of groupoids commutes:

N

(mol)°

S9,
(mF)°

3.22.1. Corollary. For any morphism of groupoids F: I' — 1", there exists a
unique set map

7Z'0Ff 7Z'0F — 7Z'0F/

such that following diagram commustes:

r F I

pr l i pr

(mol)° — (moI")°.

7o

3.23. Lemma. For any groupoid U, the set map

To idrl 7Z0F — 7Z()F
is the identity map.
3.24. Lemma. Suppose that I, I, and 1" are groupoids, and suppose F: I'" — T
and G: 1" — 1" are two maps. Then the two set maps nol" — =l given by
7o(F o G) and (moF) o (m0G) are equal.
3.25. Proposition. An equivalence I — I between groupoids induces a bijection

7Z'()Fl = ol

3.25.1. Corollary. 7he following are equivalent for a groupoid 1.

(3.25.1.1) The set myl consists of exactly one point.

(3.25.1.2) There exists an object x of 1" such that for any object y of I', the set
Isomr(x, y) is nonempty.

(3.25.1.3) There exists a group G and an equivalence of groupoids G — T

3.26. Definition. A groupoid will be said to be connected if the equivalent con-
ditions of Cor. 3.25.1 hold.
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3.27. Proposition. A morphism ¥: I' — T of groupoids is an equivalence if and
only if the following two conditions obtain.

(3.27.1) The morphism F induces a bijection mol" — 7ol
(3.27.2) For any object x € 1, the induced homomorphism 1", — Ty, is an
7 1y 09j 4 x €9
isomorphism.

4. THE POINCARE GROUPOID AND THE FUNDAMENTAL GROUP

4.1. Definition. Suppose X a numerically generated space. Then a path in X
from a point x to a point yisamap v: I — Xsuch that y(0) = xand (1) = y.
The space of paths from x to y is the fiber P, ,(X) of the map

Map(I,X) — X x X

given by 7 (7(0),v(1)) (As usual, we use the numerically generated fiber
product.)

4.2. Proposition. Suppose X a numerically generated space, and suppose x, y, z €
X. Then the map
Copa Dy (X)) X Py (X) — P ,(X)
given by the formula
a2t ifre|0,1/2
o)) = 0020 TEE
Bi—1) ifrell)2,]

is continuous.

4.3. Proposition. For any map g: X — Y of numerically generated spaces, and
Jfor any points x, y € X the map Map(1, X) — Map(L,Y) restricts to a map

&+ PxJ(X) — Lelx).5() (Y).

4.4. Theorem. Suppose X a numerically generated space. Then there is a groupoid
I, X whose objects are points of X, in which

IsomH1X<x>)/) = ﬂOPxJ/<X)>
and composition is given by taking 1 of the map c., . of the previous proposition:
ﬂOCx,y,z: 7Z'0P},7Z(X) X 7Z'0Px7},(X) = 77:0<Py,z(X) X Px’y<X)) — 7T0Px7z(X)

4.5. Definition. Suppose X a numerically generated space. The groupoid I1; (X)
of the previous theorem is called the fundamental groupoid of the numerically
generated space X. For any point x € X, the isotropy group

71 (X, .X') = (H1X)x
is called the fundamental group of X.
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4.6. Proposition. For any map g: X — Y of numerically generated spaces, the set
maps

2 X—Y and mg.: mPyy(X) — 0Py o) (Y)
define a morphism of groupoids

ngl HIX — HlY

4.7. Example. Consider the coproduct X := S' U'S', and consider the action of
Z/2 onX obtained by switching the two summands. Then there is an induced action
of Z/2 on 11,(X), but for no point x € X is it the case that we obtain an induced
action on w1 (X, x).

4.8. Lemma. For any numerically generated space X, the set map
H] idxi H]XH H]X
is the identity map.
4.9. Proposition. Suppose that X, Y, and Z are numerically generated spaces,

and suppose p: X — Y and q: Y — Z are two maps. Then the two set maps
II,X — I, Z given by I1,(q o p) and (11,q) o (11,p) are equal.

4.10. Proposition. For any numerically generated space X, there is a natural bi-
Jjection

7Z'0H1X = 71'0X.
4.11. Proposition. A homotopy equivalence g: X =Y induces an equivalence
ngZ H]X — HlY
of groupoids.

4.12. Example. If m > 1, the groupoid 11, (R™) is equivalent but not isomorphic
to the trivial group.

4.13. Example. For any m # 2, the spaces R* and R™ are not homeomorpbic.

4.14. Example. For any m > 2, the map S” — * induces an equivalence of
[fundamental groupoids.

4.15. Proposition. For any two numerically generated spaces X and Y, the two
maps I (pr,) : II; (X x Y) — I, X and 11, (pr,) : II; (X x Y) — I1,Y induce
an isomorphism

HI(X X Y) - H1X X H]Y
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4.16. Definition. A pointed space (X, x) consists of a space X and a point (called
the basepoint) x € X. For any two pointed numerically generated spaces (X, x)
and (Y, y), a pointed map is a map g: X — Y such that g(x) = y. We write

Map, (X, x), (Y, 7))

for the (numerically generated) fiber product
Map(X, Y) Xntap(av) Map({x}. {7}).

4.17. Notation. Consider the pointed space (S!, 1). For any pointed numeri-
cally generated space (X, x), write

0,X := Map, (S', X).

If the chosen point x € X is clear from the context, we may write X for 2, X.

Furthermore, we may regard (2X as a pointed (numerically generated) space,
where the basepoint is the constant map ¢,: S' — X at x. Consequently, we
may iterate this construction to obtain, for every » > 0, a pointed space

Q"X = QO X,
Now for any 7 > 2, write

7.(X, x) == mQV"X.

4.18. Proposition. For any pointed numerically generated space (X, x), there exists
a natural isomorphism

71 (X, x) = 7oL, X.

4.19. Proposition. For any pointed numerically generated space (X, x), the group
71 (X, ¢,) is abelian.

4.19.1. Corollary. For any pointed numerically generated space (X, x) and for any
n > 2, the group n,(X, x) is abelian.
5. SHEAVES AND THE ETALE FUNDAMENTAL GROUPOID

5.1. Notation. For any space X, write Op(X) for the following category. The
objects are open sets of X, and a map U — V is an inclusion U < V; that is,
there is a unique morphism U — Vifand only if U C V.

s.2. Definition. Suppose X a space. Then a presheaf . on X is a functor
7 Op(X)°P —> Set.

For any open sets U,V € Op(X), if U C V, we write pycy for the set map
(V) — 7(U).
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For an open set U € Op(X), an element s € .7(U) is sometimes called a
section of .7 over U. An element of .7(X) will be called a global section.

5.3. Example. Suppose X and Y spaces. For any open set U € Op(X), write
7x(U)
Jor the set of maps U — Y. This defines a presheaf 7’y on X.

5.4. Example. Suppose p: Y — X a continuous map. Then for any open set U €
Op(X), set
L(p)(U) = L(Y/X)(U) == {s € 7X(U) | pos = idu}.

We call T'(Y/X)(U) is the set of sections of p over U, and we call I'(X/Y) the
presheaf of local sections of p.

s.s. Proposition. Suppose S a set and suppose X a numerically generated space.
For any open set U € Op(X), there is a natural bijection

Map(zoU, S) = 75 (V).

5.6. Example. Write C* := C — {0}. Consider the map sq: C* — C* given
by & v &2, Then the presheaf ' (sq) admits no global sections.

s.7. Example. Consider the exponential map exp: C — C*. Then the presheaf
I'(exp) admits no global sections.

5.8. Example. For any set S, one may form the constant presheaf /s ar S, which
assigns to any open set U the set S, and to any open sets U,V € Op(X) withV C U
the identity map on S.

5.9. Example. Suppose X a space, and suppose V. € Op(X) a particular fixed
open set. We have a presheaf 77 defined by the rule

{x} if UcCV

1%} otherwise.

sv(U) == {

In this case, the restriction maps are unique: for any open sets U, U’ € Op(X) with
U C U, there is a unique map v (U) — y(U').

The presheaf v is called the presheaf represented by V € Op(X).
s.10. Definition. A morphism of presheaves ¢: .7
mation. That is, ¢ consists of a tuple (¢u)ucop(x) of set maps

¢u: A(U) — 2 (U),

—> .7 is a natural transfor-
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subject to the following condition: for any open sets U, V € Op(X) with V C
U, the following diagram commutes:

AU) 2 )
pvcu l l pvcu

(V) ? 7(V).

\%

Write Mory (.7, -¢) for the set of all morphisms of presheaves .7 — .7.
Given morphisms of presheaves ¢: .7 — .9 and ¢: . — 7, we can form
the composite ) o ¢: .7 — 7 in the following manner: for any open set

U € Op(X), set
(Y0 @)y =ty o du.
This defines a morphism of presheaves . — 7 as desired.

A morphism of presheaves ¢: .7 — .7 is said to be an isomorphism if there
exists a morphism of sheaves ¢): .4 — .7 such that both

Yop=id, and ¢orp=id, .
s.11. Proposition. For any presheaf s on a space X and for any open set U €
Op(X), there is a natural bijection
Morx (74, %) 2 (U).
s.11.1. Corollary. For any space X and any two open sets U,V € Op(X), there

is a morphism v: Ay — A if and only if one has U C 'V, in which case v is
unique.

s.12. Example. For any two spaces X and Y, the presheaf 7%, is isomorphic to the
presheaf of local sections I'(Y x X/X) of the projection map pr,: Y x X — X.

5.13. Example. Suppose S is a set, and suppose X a space with a distinguished point
x € X. Then the skyscraper presheaf at x with value S is defined by the rule

S (U) = {S if xeU;

*  otherwise.

5.14. Definition. Suppose X a space, and suppose .7 a presheaf on X. Then for
any point x € X, consider the set

[l 7U)={(U.s)|xeUec0pX),se7U)}

x€Ue0p(X)
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On this set we may impose an equivalence relation ~ in the following manner.
For any two elements (U, s) and (V, ), we say that (U, s) ~ (V,¢) if and only
if there exists an open neighborhood W C U NV of x such that pycy(s) =
pwev(2). Now define the stalk of .7 at x to be the set

= JI 2w /N.
)

x€Ue0p(X
The equivalence class of a section s under this equivalence relation is called the

germ of s, and is denoted s,.

5.15. Lemma. Suppose X a space, and suppose x € X a point. For any morphism
O — .9 of presheaves on X, the set map

I «w—- I +“w
x€UeO0p(X) x€Ue0p(X)

descends ro a set map on the stalks ¢: 7 — 9.
5.16. Proposition. Suppose X a space, and suppose x € X a point. Then for any
presheaf . on X and any set S, there is a natural isomorphism

Map( 7., S) = Mor(.7, S*).
5.17. Notation. Suppose U a space, and suppose {U, },ca an open cover of
U. Forany n,0 € A, write

Ung = UU N Ue.

5.18. Definition. A presheaf .7 on a space X is said to be a sheaf if, for any
open set U € Op(X) and any open cover {U, }4en of U, the map

11 rvecu: 7(0) — [] 7(U.)
acA ach
is an injection that identifies .7 (U) with the set of tuples
(Sa)aEA S H (/-(Uoc)
acl

such that for any 7,0 € A, one has
pUnGCUn (577) = pUnGCUQ (50) °

5.19. Lemma. Suppose .7 a sheaf on a space X. Then /(D) = {x}.
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5.20. Example. Any sheaf on the one-point space {x} is uniquely determined (up
to isomorphism) by its set of global sections, so we will make no distinction between
sets and sheaves on {*}.

s.21. Example. For any two spaces X and X, the presheaf 7' is a sheaf. called the

sheaf of local continuous functions on X with values in Y.

s.22. Example. For any continuous map p: Y — X, the presheaf of local sections
L' (Y/X) is a sheaf; called the sheaf of local sections of p.

5.23. Example. For any space X, any point x € X, and any set S, the skyscraper
presheaf S* is a sheaf, called the skyscraper sheaf.

5.24. Example. For any space X and any open set U € Op(X), the presheaf 7
is a sheaf, called the sheaf represented by U.

s.25. Example. For any space X and any set S # {+}, the constant presheaf on X
at S is not a sheaf.

5.26. Theorem. Suppose X a space, and suppose .7 a sheaf on X. For any open set
U € Op(X), the map

A0) — 1] %
that carries a section s to the equivalence class of the pair (U, s) is injective.

5.26.1. Corollary. Suppose .7 and -9 sheaves on a space X. Then if
o,V S — J
are two morphisms such that for every point x € X, the induced maps
R
on stalks coincide (so that ¢, = 1,.), then ¢ = 1.

5.27. Theorem. Suppose .7 and -9 sheaves on a space X. Then a morphism

9252 S — 9

is a bijection or an injection if and only if, for every point x € X, the set map on
stalks . . — 9. is so.

5.28. Warning. If ./ and -7 are sheaves on a space X such that there are bijec-
~ g

tions ./, = .7, for every point x € X, it does nor follow that .7 and -7 are
isomorphic.
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5.29. Notation. Suppose X a space and .7 a presheaf on X. Consider the set

Eo(.7) =[] 7

x€X

there is an obvious map p,: Et(.7) — X whose fibers are precisely the stalks
of .7. For any open set U and any section s € .7(U), there is a corresponding
map

0,0 U— Et(.9),

given by the assignment x +— s,, such that p o s = id.

5.30. Definition. Suppose X a space and .7 a presheaf on X. The espace éralé of
7 is the set Et(.7) equipped with the finest topology such that for any section
s € .7(U), the corresponding map

o,: U— Et(.7)

is continuous. That is, we declare a subset V C Et(.7) to be open if and only
if, for any open set U € Op(X) and any section s € .7(U), the inverse image
o '(V) is open in U.

5.31. Definition. A continuous map p: Y — Xis said to be a local homeomor-
phism if every point y € Y is contained in a neighborhood V such that p is open
and injective.

5.32. Proposition. For any space X and any presheaf . on X, the natural mor-
phism p: Bt(F) — X is a local homeomorphism.

5.33. Proposition. Suppose S a set, and suppose /s is the constant presheaf at S
on a space X. Then the éspace étalé of /s is the projection pr,: X x S° — X.

5.34. Lemma. Suppose p: Y — X a local homeomorphism. Then the éspace étalé
Z := Eo(T(Y/X)) of the sheaf of local sections T (Y /X) is canonically homeomor-
phic over X 10 Y. That is, there is a unique homeomorphism Y — Z such that the
diagram

Y Z

N/

X

commites.
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5.35. Definition. Suppose X a space and .7 a presheaf on X. The sheafification
of .7 is the sheaf

a7 =T (Et(7)/X)
of local sections of the projection map p: Et(#) — X. The morphism of
presheaves

Nyt S —as

that assigns to any section s € .7(U) the section x — s, over U is called the
unit morphism.

5.36. Proposition. For any presheaf . on a space X, the natural morphism
Nyt S —as

induces a bijection 1, ./, — (a.7), on stalks for every x € X.

5.36.1. Corollary. For any sheaf 7 on a space X, the unit morphismn,: ./ — a7
is an isomorphism.

5.37. Example. 7he constant sheaf .75 at a set S on a space X is the sheafification
of the constant presheaf s at S. It is isomorphic to the sheaf of local sections I'(X x
S° /X). Consequently, the constant sheaf is not really constant: it takes many different
values on an open set U C X.

5.38. Proposition. Suppose X a numerically generated space. Then there exists a

global section u € .7, x(X) such that for any set S and any global section o €

T5(X), there exists a unique set map o — S such that the induced morphism of
sheaves G . . ,x —> s has the property that 0 (u) = o.

5.39. Theorem. Suppose X a space, suppose " a presheaf on X, and suppose -9 a

sheaf on X. Then for any morphism ¢: 7 —s .9, there exists a unique marphzsm
ap: as — -9 such that the diagram

771/ .7\%
as 5
ag

commites.

5.39.1. Corollary. Suppose X a space. For any morphism ¢: .7 — .5 of presheaves,

there exists a unique morphism
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such that following diagram commutes:

9
N 57
ﬁy’l ln.f/
as ay.
ag

5.40. Definition. Suppose g: X — Y a map.

(5.40.1) For any sheaf .7 on X, define the direct image g, of .7 as the sheaf
that assigns to any open set V € Op(Y) the set

&7 (V) = 7(g V).
(5.40.2) For any sheaf . on'Y, we define the inverse image g*-9 as the sheaf of
local sections of the pullback

X xy Et(-¢) — X
of the map p, : Et(-9) — Y
5.41. Example. Suppose A C X a subspace of a space X. Then for any sheaf . on
X, if i denotes the inclusion map, the sheaf i*. on A is denoted .7\ and is called

the restriction of .7 to A. If. in particular, A is an open set, then the restriction 7|5
assigns to any open set U C A the set 7(U).

5.42. Example. Suppose X a space. We have a unique map |: X — {x}. For any
set S, there is a natural isomorphism
S = 7
between the inverse image along | and the constant sheaf. For any sheaf ./ on X,
there is a natural isomorphism
L7 = 7(X)
between the direct image along | and the set of global sections.

On the other hand, suppose x € X a point, and write x: {x} — X for the
corresponding inclusion. For any set S, there is a natural isomorphism

xS =S

between the direct image along x and the skyscraper sheaf. For any sheaf 7 on X,
there is a natural isomorphism

T T,

between the inverse image along x and the stalk of .7 at x.
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5.43. Theorem. Suppose g: X — Y a map, .7 a sheaf on X and -9 a sheafon Y.
Then there exists a natural bijection

Morx(g*-7,.7) = Mory(-9, g..7).

5.44. Definition. Suppose X a space. A sheaf .7 on X will be said to be locally
constant if every point x € X is contained in an open neighborhood U such
that the sheaf .|y is constant.

5.45. Notation. For any space X, denote by LC(X) the category whose ob-
jects are locally constant sheaves on X and whose morphisms are morphisms of
sheaves.

5.46. Example. For any natural number n, consider the map p,,: C* — C* given
by & +— &". Then the sheaf of local sections I'(p,) is locally constant, but it is not

constant.

5.47. Proposition. Suppose X a connected numerically generated space. Then a
locally constant sheaf 7 on X is a constant sheaf if and only if for any point x € X,
the set map ./ (X) — .7 that carries a global section s to its equivalence class in
7 is a bijection.

5.48. Proposition. 7he only locally constant sheaves on 1 are constant.

5.49. Definition. Suppose X a space. Write Set for the category whose objects
are sets and whose morphisms are set maps. For any point x € X, the fiber
functor for x is the functor w, := x*: LC(X) — Set.

s.so. Notation. Suppose X a numerically generated space, suppose x,y € X,
and suppose y: I — X a path such that 7(0) = xand v(1) = 5. If 7 isa
locally constant sheaf on X, then we obtain a bijection w, (.%):

1%

()2 (Yo (YD) 2 (7)1 2 ().
5.51. Proposition. Suppose X a numerically generated space, suppose x,y € X,
and suppose v : 1 — X a path such that v(0) = x andy(1) = y. If ¢: 7 — 9

is a morphism of locally constant sheaves on X, one has
8y 000r(7) = 0s(7) 0 b

s.s1.1. Corollary. Suppose X a numerically generated space, suppose x,y € X,
and suppose v: 1 — X a path such that v(0) = x and ¥(1) = y. Then w., is a

natural isomorphism w, > W,
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s.52. Proposition. Suppose X a numerically generated space, and suppose x,y €
X. Ifn,0 € P, ,(X) lie in the same connected component, then one has

Wy = Wy.

5.53. Definition. Suppose X a space. Write Fib(X) for the following groupoid.
The objects are points x € X, and for any two points x, y € X, the set

Isomgpx) (x,7)
is the set of natural isomorphisms w, > w,.
5.54. Definition. Suppose X a numerically generated space. Then we say that
X is locally contractible if, for any point x € X and any open neighborhood U

of x, there exists a neighborhood x € V C U such that the inclusion {x} <V
is a homotopy equivalence.

5.5 5. Theorem. Suppose X a locally contractible numerically generated space. Then
the assignment y +— w., defines an equivalence of groupoids

IT; (X) = Fib(X).

s.ss.1. Corollary. For any locally contractible numerically generated space X and
any point x € X, the assignment 7y +— w., defines an isomorphism

71(X, x) = Aut(w,).

6. SIMPLICIAL SETS AND HIGHER GROUPOIDS

6.1. Definition. Consider the following category A. The objects are nonempty
totally ordered finite sets, and a morphism K — J in A is a nondecreasing map
K—].

For any natural number 7, denote by [#] the totally ordered finite set

{0,...,n}

(whose order is the usual one). We regard [7] as an object of A.

6.2. Lemma. For every object ] of A\, there exists a unique integer ny and a unique
isomorphism ] < [ny]. For any two objects ] and K of A, the set Isoma (K, ]) of

isomorphisms K = ] is given by

{x} ifne =y
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6.3. Lemma. Every morphism g: K — ] of A can be factored in a unique fashion
asg = gy o0 g_, where g is an injective nondecreasing map, and g_ is a surjective
nondecreasing map.

6.4. Lemma. Suppose n a natural number. For any integer 0 < i < n, there is a
unique nondecrmsz’ng injection

0;: [n— 1] — [7]
such that i is not contained in the image of 0. Similarly, there is a unique nonde-
creasing surjection

o;: [n+ 1] — [7]
such that o,(i) = o;(i + 1).

6.5. Definition. A simplicial set is a functor X: A°? — Set. The set X([#]) will
usually be denoted X,,. Its elements will be called n-simplices. We sometimes
call 0-simplices vertices and 1-simplices edges.

A morphism g: X — Y of simplicial sets is a natural transformation. That is,
it is a tuple (gj)jea of set maps gj: X(J) — Y(J) such that for any morphism
¢: K—Jof A, the diagram

commutes. We write Mor(X,Y) for the set of morphisms X — Y.

6.6. Lemma. A simplicial set X is uniquely identified by the following data:

(6.6.A) for any natural number n, a set X,,;

(6.6.B) for any natural number n and any integer 0 < i < n, a map d; =
X<5z) : Xn - Xn—l;

(6.6.C) for any natural number n and any integer 0 < i < n, a map s; ‘=
X(O'Z) . Xn —> Xn—‘rl;

subject to the following axioms.

(6.6.1) If i <, then did; = d;_,d}.

(6.6.2) Ifi > j, then s;5; = sp5:_.

(6.6.3) Lastly,

5]‘—16{1' ifi <j
disi = < id ifi=jori=j+1;
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6.7. Example. For any set S, the discrete simplicial set S° at S is constant functor

J—S.

6.8. Example. For any object ] of A\, the simplicial set \) is given by the assignment
K+— Mora(K,J).
For any simplicial set X, there is a natural bijection
Mor(A!, X) = X(J).
For any natural number n, we write N for A, and we call it the standard

n-simplex.

6.9. Example. For any category C, the nerve NC is defined in the following man-
ner. Any object ] of A\ can be regarded as a category whose objects are the elements
of 1 and whose morphisms are given by

O P
Now NC is given by the assignment
J + Fun(J, C),
where Fun(], C) denotes the set of functors ] — C.

6.10. Lemma. For any object ] of A\, there is a natural isomorphism NJ = AJ.

6.11. Proposition. For any categories C and D, the natural map
Fun(C, D) — Mor(NC,ND)

is a bijection.

6.12. Example. For any two simplicial sets X and Y, the product X x Y is the
Sfunctor given by the assignment

J=X(J) x Y(J)-

More generally, for any morphisms X — Z and Y — Z of simplicial sets, the
fiber product X X Y is the functor given by the assignment

J—X(J) xzg) Y(J).

6.13. Example. If X and Y are two simplicial sets, then the coproduct X LI'Y is
the functor given by the assignment

J—=X(J) U Y(J).
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6.14. Definition. Suppose X a simplicial set. Suppose 7 a natural number and
7 € X,,. For an integer 0 < i < 7, the i-th face of T is the (n — 1)-simplex
d;(7), and the i-th degeneracy of T is the (n + 1)-simplex s;(7).

An (n+ 1)-simplex is degenerate if it lies in the essential image of X(0;); we'll
say that it is nondegenerate if it is not degenerate.

6.15. Lemma. Suppose X a simplicial set, and suppose that for every natural num-
ber n, one has a subset Y, C X,,. If T € Y,, implies that for any integer 0 < i < n,
one has di(T) € Y,—1 and s;(T) € Y11, then the assignment 1 — Y, defines a
simplicial set, and the inclusions Y,, — X, define a morphism of simplicial sets.

6.16. Definition. A simplicial set Y constructed as above will be called a sim-
plicial subset of X, and we will write Y C X.

6.17. Example. For any morphisms X — Z and Y — Z of simplicial sets, the
fiber product X < Y is naturally a simplicial subset of X x Y.

6.18. Example. For any natural number n and any integer 0 < i < n, the
inclusion

{0,...,i—=1,i+1,...,n} < [n]
defines a simplicial subset
A{O,..A,ifl,z#l,...,n} C An’

which we call the i-th face of A”.

6.19. Example. For any natural number n, denote by ON" C A" the smallest
simplicial subset that contains all the faces of N". That is, the set of m-simplices of
OA” is given by

((9A”)m — U A{O,...,i—l,i—i—l,...,n}'

0<i<n

6.20. Example. For any natural number n and any integer 0 < k < n, denote by
N} C OA” the smallest simplicial subset that contains all the faces of A" except for
the k-th. That is, the set of m-simplices of N7, is given by

(AZ)m — U A{O,...,z’—l,z‘-{—l,...,n}‘

0<i<n, i#k

6.21. Example. For any simplicial set X and any integer n > 0, let sk, X C X be
the smallest simplicial subset of X that contains all the n-simplices of X. That is, the
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set of m-simplices of sk, X is given by

X, ifm <

k,X),, ==
(S ) {Uil,...,imn Sim—n S0y (Xm) me > n.

6.22. Definition. Suppose 7 a natural number, and write A<, C A for the
full subcategory spanned by those objects ] of A such that #; < 7. For any
simplicial set X, write X<, for the restriction of X to Aogpn.

6.23. Lemma. For any natural number n, one has
sk, A" = A",
and for any integer 0 < k < n+ 1,
sk, AZ+1 =~ sk, A"
6.24. Definition. For any natural number 7 and any simplicial set X, define a
simplicial set cosk,, X as the functor given by the assignment
J +— Mor(sk, AT, X).
The inclusions sk, AJ < AJ induce a morphism X — cosk, X. We say that X

is n-coskeletal if this morphism is an isomorphism.

6.25. Proposition. For any natural number n and any two simplicial sets X and
Y, there are natural bijections

Mor(sk, X, Y) = Nat(X<,, Y<,) = Mor(X, cosk, Y),

where Nat(X<,, Y<,) is the set of natural transformations X<,, — Y<,,.
6.26. Proposition. 7he nerve of any category is 2-coskeletal.

6.27. Definition. A simplicial set X is a Kan complex or an co-groupoid if for
any natural number » > 1 and any integer 0 < # < 7, the inclusion morphism
A} — A” induces a surjection

Mor(A”, X) — Mor(A}, X).

For a natural number 7, we say that an co-groupoid X is a m-groupoid if, in
addition, for any natural number #» > m + 1 and any integer 0 < £ < 7, the
inclusion morphism A} < A” induces a bijection

X, = Mor(A”,X) — Mor(A}, X).

6.28. Example. 7he standard simplex A" is a Kan complex if and only if n = 0.
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6.29. Example. A 0-groupoid is precisely a discrete simplicial set.

6.30. Proposition. 7he nerve of a category C is a Kan complex if and only C is a
groupoid, in which case NC is a 1-groupoid.

6.31. Proposition. An m-groupoid is (m+1)-coskeletal, and an m-coskeletal Kan
complex is a (m + 1)-groupoid.

6.32. Proposition. Any 1-groupoid is the nerve of a groupoid.

6.33. Proposition. I[f X and Y are m-groupoids (0 < m < 00), then the product
X X Z is an m-groupoid as well.

6.34. Proposition. I[fX andY are m-groupoids (0 < m < 00), then the coproduct
X UY is an m-groupoid as well.

6.35. Proposition. Suppose X: A® — Grp a simplicial group, i.c., a sim-
plicial set in which each X, is equipped with a group structure and the maps
di: X, — Xyo1 and s;2 X, — X,y are all group homomorphisms. Then X is
a Kan complex.

6.36. Definition. Suppose X and Y two simplicial sets. Define a simplicial set
Map(X,Y) as the functor given by the assignment

J — Mor(X x ATY).
6.37. Lemma. For any simplicial sets X, Y, and Z, there is a natural bijection
Mor(X X Y,Z) = Mor(X, Map(Y,Z)).

6.38. Proposition. Suppose C and D two categories. Then there is a natural iso-
morphism
NFun(C, D) = Map(NC,ND),

where Fun(C, D) denotes the category whose objects are functors C — D and
whose morphisms are natural transformations.

6.39. Theorem. Suppose X a simplicial set, and suppose Y an m-groupoid (0 <
m < 00). Then Map(X,Y) is an m-groupoid as well.

6.39.1. Corollary. For any simplicial set X and for any groupoid I, the simplicial
set Map (X, NT) is the nerve of a groupoid.
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6.39.2. Corollary. For any simplicial set X and for any set S, the simplicial set
Map(X, S?) is discrete.

7. THE POSTNIKOV TOWER

7.1. Definition. Suppose X a simplicial set. Consider the equivalence relation
~ on X, generated by declaring two vertices x, y € X; to be equivalent if there
exists a 1-simplex 7 € X such that dy(7) = x and 4;(7) = y. Denote by
moX := X/ ~ the set of equivalence classes under this equivalence relation, and
write px o1 Xo — 7oX the projection of the vertices of X onto their equivalence
classes.

7.2. Example. For any set S, one has mo(S°) = S.

7.3. Lemma. If X is a Kan complex, then two vertices are equivalent in the sense
above if and only if there exists a 1-simplex T € Xy such that dy(T) = x and

di (1) =y.

7.4. Lemma. Suppose X a simplicial set. For any natural number n > 1, any
n-simplex T € X,,, and any two morphisms ¢, [0] — [n] of A, we have

X(@)(1) ~ X(@)(7).

Consequently, there exists a unique morphism py: X — (mX)? that on vertices is
the map px o above.

7.5. Theorem. Suppose X a simplicial set. Then the morphism px has the following
universal property: for any set S and any morphismg: X — SO, there exists a unique
set map wog: woX — S such that the following diagram commutes:

N

(moX)°

ﬂog

7.5.1. Corollary. For any morphism g: X — Y between simplicial sets, there exists
a unique set map

TTog- 7Z'0X —> 77.'0Y
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such that following diagram commutes:

X Y

| |

(71'0X)5 (*g)é’ (7Z'0Y)5.

7.5.2. Corollary. The assignment X +— moX defines a functor sSet — Set that is
left adjoint to the functor given by the assignment S +— S?,

7.6. Proposition. For any simplicial sets X and Y, the two maps X X Y — X and
X XY — Y rogether induce a bijection

77.'0(X X Y) > o X X 7oY.

7.7. Proposition. For any family {X;} of numerically generated spaces, the inclu-
sions X; — [ [, X; together induce a bijection

HnO(X,-) = (HX,-) .

7.8. Definition. Suppose X a simplicial set and Y a Kan complex. We will say
that two morphisms p,q: X — Y are homotopic if the images of p and ¢ in
7o Map(X,Y) are equal. In this case we write p >~ ¢.

7.9. Lemma. Suppose X a simplicial set and Y a Kan complex. Two morphisms
p,q: X— Y of simplicial sets are homotopic just in case there exists a map

h: X x A Y
such that one has

X x A =p and h(Xx A =4.

7.10. Definition. We say that a morphism ¢: X — Y of simplicial sets is a
homotopy equivalence if there existsamap 1) : Y — X such that both 1o ~ idyx
and ¢ 0 Y ~ idy.

7.11. Proposition. A homotopy equivalence X — Y between simplicial sets in-
duces a bijection

7?.'0X - 77.'()Y.
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7.12. Definition. Suppose Y a Kan complex, and suppose X' C X a simplicial
subset. We say that p and g are homotopic relative ro X' if there exists a morphism

/]:XXAIHY

such that
X x A =p and A|(X x A =4,
and 4|(X’ x A') factors through the projection X' x A! — X'

7.13. Definition. Suppose X a Kan complex. Consider the equivalence rela-
tion ~ on the set X; generated by declaring two 1-simplices 7,v € X; to be
equivalent if the corresponding maps 7, v: A! — X are homotopic relative to
OAL

Define a groupoid II; X as follows. The objects of I1; X are vertices of X, and
for any vertices x, y € Xy, the set Isomyy,x(x, y) is the set of equivalence classes
of 1-simplices.

7.14. Example. For any groupoid I', there is an isomorphism of groupoids
[ = I (NT).

7.15. Proposition. Suppose X a Kan complex. Then the following are equivalent
Jfor two 1-simplices T,v € X.

(7.15.1) T ~1 .

(7.15.2) There exists a 2-simplex 1) such that dy(n) = T and dy(n) = v, and
dr(n) is degenerate.

(7.15.3) There exists a 2-simplex 1) such that di(n) = T and dy(n) = v, and
dy(n) is degenerate.

(7.15.4) There exists a 2-simplex 1) such that di(n) = T and dy(n) = v, and
do(n) is degenerate.
(7.15.5) There exists a 2-simplex 1) such that dy(n) = T and d\(n) = v, and

dy(n) is degenerate.

7.16. Proposition. Suppose X a Kan complex. Then there exists a unique mor-
phism px: X — NILX of simplicial sets such that px o is the identity map from
the set Xy to the set of objects of 111X, and px ; is the projection from X, — X1/ ~1.

7.17. Theorem. Suppose X a simplicial set. Then the morphism px has the following
universal property: for any groupoid 1" and any morphism g: X — NI, there exists
a unique morphism of groupoids 11, g: 11X — T such that the following diagram
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commutes:
X
N

NIL; X I.

H1g

7.17.1. Corollary. For any morphism g: X — Y between simplicial sets, there
exists a unique morphism of groupoids

ng: Hlxﬂ HlY

such that following diagram commustes:

X Y

a |

NI, X —— II,Y.
NII, g

7.17.2. Corollary. 7he assignment X +— 11, X defines a functor Kan — Gpd
that is left adjoint to the functor given by the assignment I — NI,

7.18. Proposition. For any simplicial sets X and Y, the two maps X x Y — X
and X X Y — Y together induce an isomorphism

Hl(X X Y) = H]X X HIY

7.19. Proposition. For any family {X;} of numerically generated spaces, the in-
clusions X; — | [, X; together induce an isomorphism

[Tmx) =1, (Hx,) :

7.20. Definition. Suppose X a Kan complex, and suppose 72 a natural number.
Consider the morphism cosk,,+; X — cosk,, X, and consider the simplicial
subset X" < cosk,, X whose set of k-simplices is the image of the set map
(cosk,,+1 X)z — (cosk,, X) .

Now let ~,, be the equivalence relation on the simplices of X" generated by
declaring two k-simplices 7, v € (X)), to be equivalent if the corresponding
morphisms 7, v: sk,, A* — X are homotopic relative to sk,, | A*.

Now let IT,,X denote the simplicial set whose 4 simplices are given by the set
of equivalence classes

(1L, X) := (X(m))/ ~k -
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There is a natural morphism X — X", and thus a morphism px : X —IT,,X.

7.21. Proposition. For any Kan complex X, the simplicial set 11,,X is an m-
groupoid.

7.22. Example. For any m-groupoid X, there is an isomorphism

X 2 11, X.

7.23. Example. For any Kan complex X, one has
H()X = (ﬂoX)a.

7.24. Example. For any Kan complex X, one has
I1,X 2 NI, X.
(Note the abuse of notation.)
7.25. Theorem. Suppose X a simplicial set and m a natural number. Then the mor-
phism px has the following universal property: for any m-groupoid Y and any mor-

phism g: X — Y, there exists a unique morphism of groupoids 11,,¢: 11, X — 'Y
such that the following diagram commutes:

N
11, X Y.

1IL.g

7.25.1. Corollary. For any natural number m and any morphism g: X — 'Y
between simplicial sets, there exists a unique morphism of m-groupoids

I,¢: 11,X — I1,Y

such that following diagram commutes:

X Y

n| |

I, X — 1IL,Y.
IL,g

7.25.2. Corollary. For any natural number m, the assignment X +— 11, X defines
a functor Kan — ,Gpd that is left adjoint to the inclusion functor ,Gpd — Kan.
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7.26. Proposition. For any natural number m and any simplicial sets X and Y,
the two maps X X Y — X and X X Y — Y together induce an isomorphism

IL,,(X x Y) = II,,X x IL,Y.

7.27. Proposition. For any natural number m and any family {X,} of numerically
generated spaces, the inclusions X; — [ [, X; together induce an isomorphism

[m.x) =, (]_[ X,.> .

8. THE SINGULAR SIMPLICIAL SET

8.1. Lemma. For any object ] € A, order the set A} = Mor(J, [1]) so that for
any 0,7 ] —> [1], one has 0 < T just in case there exists j € ] such that

a(j) < 7(j).
Then A} is totally ordered and contains a minimum and maximum element, and
for any morphism K — ] in A, the induced map

Al AL

preserves the order and minimum and maximum elements.

8.2. Definition. Define a functor

A A — Num

top *
as follows: for any object ] € A, let
Al C Map((A)°,1)

tOp
be the subspace consisting of those maps that preserve the order and minimum
and maximum elements.
Now for any numerically generated space X, the singular simplicial set or
Poincaré co-groupoid 11, (X) is the simplicial set defined by the formula

I (X); := Map(A!  X).

tOp’
This defines a functor
Il : Num — sSet.

8.3. Theorem. For any numerically generated space X, the simplicial set 11, (X)
is, in fact, an 0o-groupoid.

8.4. Theorem. Two maps ¢,v: X — Y of numerically generated spaces are ho-
motopic if and only if the corresponding morphisms

HOO(¢)7 Hoo(qvb) : HOOX e HooY
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are homotopic.

8.5. Theorem. For any numerically generated space X, there is a natural bijection
7Z'0X = 71'01_.[00 (X)

8.6. Theorem. For any numerically generated space X, there is a natural equiva-
lence of groupoids

T1,X ~ 1T, T (X) ~ NII, 1o (X).

8.7. Definition. For any integer 7 > 2 and any numerically generated space
X, write I1,(X) for the m-groupoid 11,11, (X).

8.8. Definition. For any simplicial set X, let ~ be the equivalence relation on

the coproduct
LI66 < A%,)
n>0
generated by declaring that for any morphism ¢: [m] — [#] of A and for any
(0,%) € X) x A7, one has
(X(¢) (@), %) ~ (0, AL, (0)(%))-

The geomerric realization of X is the (numerically generated) quotient space

Keop 1= (H(X‘i x At”op)> /e~

n>0

This defines a functor (-)p: sSet — Num.

8.9. Proposition. The geometric realization functor (-)p is left adjoint to the
Poincaré oo-groupoid functor Il that is, for any simplicial set X and any numer-
ically generated space Y, there is a natural bijection

Map(me, Y) = Mor(X, I (Y)).



