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Abstract
This note concerns a weak form of Parshin’s conjecture, which states that the

rational motivic Borel–Moore homology of a quasiprojective variety of dimension
𝑚 over a finite field in bidegree (𝑠, 𝑡) vanishes for 𝑠 > 𝑚 + 𝑡. It is shown that this
conjecture holds if and only if the cyclic action on the motivic cohomology of an
Artin–Schreier field extension in bidegree (𝑖, 𝑗) is trivial if 𝑖 < 𝑗.

Let 𝑘 be a finite field of characteristic 𝑝; let 𝑉 be a quasiprojective variety of di-
mension 𝑚 over 𝑘. The conjecture of Beilinson–Parshin states that if 𝑉 is smooth and
projective, then𝐾𝑖(𝑉) ⊗ 𝑸 = 0 for 𝑖 > 0; equivalently, the rational motivic cohomology
𝐻𝑖(𝑉,𝑸(𝑗)) vanishes unless 𝑖 = 2𝑗. Equivalently, the conjecture states that for𝑉 smooth
and projective,𝐻BM

𝑠 (𝑉,𝑸(𝑡)) vanishes unless 𝑠 = 2𝑡.
We are interested in the following conjecture for arbitrary (i.e., not necessarily smooth

or projective) 𝑉, which identifies a more restricted vanishing range:

1 Conjecture. The rational motivic Borel–Moore homology 𝐻BM
𝑠 (𝑉,𝑸(𝑡)) vanishes if

𝑠 > 𝑚 + 𝑡.
Combined with usual vanishing results inmotivic cohomology [3, Th. 3.6 and Th. 19.3],
this would imply that when 𝑉 is smooth (but not necessarily projective), one has (with
𝑖 = 2𝑚 − 𝑠 and 𝑗 = 𝑚 − 𝑡)

𝐻𝑖(𝑉,𝑸(𝑗)) = 0 unless 𝑖 ∈ [𝑗, 𝑗 + 𝑚] ∩ [𝑗, 2𝑗] .

Here is a conjecture concerning fields. Let 𝐾 be a perfect field of characteristic 𝑝,
and let 𝐿 ≔ 𝐾[𝑦]/(𝑦𝑝 − 𝑦 − 𝑎) be an Artin–Schreier extension, on which the cyclic
group 𝐶𝑝 acts via 𝑦 ↦ 𝑦 + 1.

2 Conjecture. The induced action of 𝐶𝑝 on𝐻𝑖(𝐿, 𝑸(𝑗)) is trivial for every 𝑖 < 𝑗.

This would imply that𝐻𝑖(𝐿, 𝑸(𝑗)) vanishes in this range, so wemay regard this as a kind
of ‘ascent’ property for motivic cohomology along Artin–Schreier covers.

The purpose of this note is to prove:

3 Theorem. Conjecture 2 implies Conjecture 1

The proof is an induction argument that reduces Conjecture 1 to Conjecture 2. We are
grateful to Joseph Ayoub, who kindly informed us that our previous formulation of this
result was too strong.
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4. If𝑚 = 0, Conjecture 1 (and indeed the Beilinson–Parshin Conjecture itself ) follows
fromQuillen’s computation of the𝐾-theory of finite fields. When𝑚 = 1, it follows from
the celebrated computations of Harder. For the purpose of induction, we now assume
this statement for quasiprojective varieties of dimension < 𝑚.

5. Choose an open immersion 𝑉 ↪ 𝑉 into a projective variety of dimension 𝑚 such
that the complement 𝑉 − 𝑉 (with its reduced scheme structure) is quasiprojective of
positive codimension. The localization sequence

⋯→ 𝐻BM
𝑠 (𝑉 − 𝑉,𝑸(𝑡)) → 𝐻BM

𝑠 (𝑉,𝑸(𝑡)) → 𝐻BM
𝑠 (𝑉,𝑸(𝑡)) → ⋯

now permits us to reduce to the case in which 𝑉 is projective. It suffices also to assume
that 𝑉 is irreducible.

Now we deploy the following result of Kiran Kedlaya:

6Theorem (Kedlaya, [2, Theorem 1]). Suppose𝑋 a projective variety, pure of dimension
𝑚 over our finite field 𝑘. Suppose 𝐿 an ample line bundle on 𝑋, 𝐷 a closed subscheme of
dimension less than𝑚, and 𝑆 a 0-dimensional subscheme of the regular locus not meeting
𝐷.

Then there exists a positive integer 𝑟 and an (𝑚 + 1)-tuple of linearly independent
sections of 𝐿⊗𝑟 with no common zero such that the induced finite morphism

𝑓∶ 𝑋 → 𝑷𝐻0(𝑋, 𝐿⊗𝑟) ≅ 𝑷𝑚

of 𝑘-schemes enjoys the following conditions.

(6.1) If 𝑷𝑚−1 ≅ 𝐻 ⊂ 𝑷𝑚 denotes the hyperplane at infinity, then 𝑓 is étale away from𝐻.

(6.2) The image 𝑓(𝐷) is contained in𝐻.

(6.3) The image 𝑓(𝑆) does not meet𝐻.

7. We thus obtain a finite morphism 𝑓∶ 𝑉 → 𝑷𝑚 that is étale over 𝑨𝑚. Let’s write
𝑍 ≔ 𝑓−1(𝐻) and 𝑈 ≔ 𝑓−1(𝑨𝑚); of course the latter is smooth.

The localization sequence

⋯→ 𝐻BM
𝑠 (𝑍,𝑸(𝑡)) → 𝐻BM

𝑠 (𝑉,𝑸(𝑡)) → 𝐻BM
𝑠 (𝑈,𝑸(𝑡)) → ⋯ ,

when combined with our induction hypothesis, reduces the problem to showing that
the rational motivic cohomology

𝐻𝑖(𝑈,𝑸(𝑗)) ≅ 𝐻BM2𝑚−𝑖(𝑈,𝑸(𝑚 − 𝑗))

vanishes whenever 𝑖 < 𝑗.

8. At any stage, it will suffice to assume 𝑈 is connected, and moreover we will be free
to pass to a further étale cover of𝑈: indeed, if 𝑔∶ 𝑈′ → 𝑈 is a finite étale map, then the
composite 𝑔∗𝑔∗ ∶ 𝐻𝑖(𝑈, 𝒁(𝑗)) → 𝐻𝑖(𝑈, 𝒁(𝑗)) is multiplication by its degree. Hence

𝑔∗ ∶ 𝐻𝑖(𝑈,𝑸(𝑗)) → 𝐻𝑖(𝑈′, 𝑸(𝑗))

is injective, and so it suffices to show that𝐻𝑖(𝑈′, 𝑸(𝑗)) = 0 for 𝑖 < 𝑗.
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9. As a first application of 8, if 𝑓∶ 𝑈 → 𝑨𝑚 is not Galois, we may pass to its Galois
closure.

Harbater and van der Put show [1, Example 5.3] that a group is a finite quotient of
the étale fundamental group of 𝑨𝑚𝑘 (for 𝑘 an algebraic closure of 𝑘) just in case it is a
quasi-𝑝-group. Hence by a second application of 8, we may pass to a finite extension of
𝑘 and to connected components if necessary and thereby assume that𝑈 is geometrically
integral, and the Galois group 𝐺 of the Galois cover 𝑓 is a quasi-𝑝-group.

By a third application of 8, we may also pass to a finite extension of 𝑘 to ensure that
the fiber of 𝑓∶ 𝑈 → 𝑨𝑚 over 0 contains a rational point.

10. Since rational motivic cohomology satisfies étale descent, we have a convergent
spectral sequence

𝐸𝑢,𝑣2 ≅ 𝐻𝑢(𝐺,𝐻𝑣(𝑈,𝑸(𝑗))) ⇒ 𝐻𝑢+𝑣(𝑨𝑚𝑘 , 𝑸(𝑗)) ≅ {
𝑸 if 𝑢 + 𝑣 = 0 and 𝑗 = 0;
0 otherwise,

by homotopy invariance and Quillen. Since 𝐸𝑢,𝑣2 vanishes unless 𝑢 = 0, we deduce that
𝐻𝑖(𝑈,𝑸(𝑗))𝐺 = 0 unless 𝑖 = 𝑗 = 0.

11. The claim now is that𝐻𝑖(𝑈,𝑸(𝑗)) = 0 is trivial when 𝑖 < 𝑗; this is clearly true when
𝐺 is the trivial group. Since𝐺 is generated by elements of order a power of 𝑝 it suffices to
show that every such element acts trivially. In particular, the conjecture will follow if for
every Galois cover 𝑈 → 𝑋 of order 𝑝𝑛, the action of the Galois group on 𝐻𝑖(𝑈,𝑸(𝑗))
is trivial. We want to show that it suffices to check the case where 𝑛 = 1. We will prove
this by induction on 𝑛 ≥ 2.

Suppose we knew the above statement for Galois covers of order 𝑝, and let 𝑔 be a
generator of the Galois group of 𝑈 over 𝑋. Suppose 𝑛 ≥ 2. Then we can find 0 < 𝑒 < 𝑛,
so that both 𝑒 and 𝑛− 𝑒 are less than 𝑛. In particular, our thesis is true for 𝑔𝑝𝑒 , that is the
action of 𝑔𝑝𝑒 on𝐻𝑖(𝑈,𝑸(𝑗)) is trivial. But then

𝐻𝑖(𝑈/𝑔𝑝𝑒 , 𝑸(𝑗)) = 𝐻𝑖(𝑈,𝑸(𝑗))𝑔𝑝
𝑒
= 𝐻𝑖(𝑈,𝑸(𝑗)) .

Moreover, 𝑔 descends to an automorphism of𝑈/𝑔𝑝𝑒 of order𝑝𝑒. Hence by our inductive
hypothesis 𝑔 acts trivially on𝐻𝑖(𝑈/𝑔𝑝𝑒 , 𝑸(𝑗)) = 𝐻𝑖(𝑈,𝑸(𝑗)).

Since (as is well-known) Galois extensions of order 𝑝 are Artin–Schreier extensions,
we may now reduce to the following situation.

We suppose𝐴 a smooth 𝑘-algebra, and we suppose that𝐴 ⊂ 𝐵 is an Artin–-Schreier
extension, so that 𝐵 ≅ 𝐴[𝑦]/(𝑦𝑝 − 𝑦 − 𝑎). We assume that 𝑇 = Spec𝐴 and 𝑈 = Spec𝐵
are geometrically integral. Hence we may consider the subring 𝑘[𝑎] ⊆ 𝐴; we note that
since 𝑈 and 𝑇 are assumed geometrically integral, it follows that 𝑎 is not algebraic over
𝑘. Consequently, the function 𝑎 is a dominant, finite type morphism 𝑎∶ 𝑇 → 𝑨1𝑘, and
we have a pullback square

𝑈 𝑆

𝑇 𝑨1𝑘,

𝑏

𝑟 𝑞

𝑎
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in which 𝑆 = Spec 𝑘[𝑥, 𝑦]/(𝑦𝑝 − 𝑦 − 𝑥), and 𝑞 is the Artin–Schreier cover given by the
inclusion 𝑘[𝑥] ⊂ 𝑘[𝑥, 𝑦]/(𝑦𝑝 − 𝑦 − 𝑥). (Of course 𝑆 ≅ 𝑨1𝑘.)

This, then, is our first reduction of Conjecture 1:

12 Reduction. The action of 𝐶𝑝 on𝐻𝑖(𝑈,𝑸(𝑗)) is trivial if 𝑖 < 𝑗.

13. We now reduce the question to one of suitable function fields. That is, we claim that
our induction hypothesis implies that if𝑉 is smooth and geometrically irreducible, then
𝐻𝑖(𝑉,𝑸(𝑗)) ≅ 𝐻𝑖(𝑘(𝑉), 𝑸(𝑗)) for 𝑖 < 𝑗. Indeed, for any nonempty open subset𝑊 ⫋ 𝑉,
one has the localization sequence

→ 𝐻BM2𝑚−𝑖(𝑉−𝑊,𝑸(𝑚−𝑗)) → 𝐻𝑖(𝑉,𝑸(𝑗)) → 𝐻𝑖(𝑊,𝑸(𝑗)) → 𝐻BM2𝑚−𝑖−1(𝑉−𝑊,𝑸(𝑚−𝑗)) →

Let 𝑐 denote the codimension of𝑊; note that 𝑐 ≥ 1, so that if 𝑖 < 𝑗 then 2𝑚 − 𝑖 − 1 >
𝑚 − 𝑐 + 𝑚 − 𝑗, whence by the induction hypothesis on the dimension,

𝐻BM2𝑚−𝑖(𝑉 −𝑊,𝑸(𝑚 − 𝑗)) = 𝐻BM2𝑚−𝑖−1(𝑉 −𝑊,𝑸(𝑚 − 𝑗)) = 0.

Consequently, one has an isomorphism

𝐻𝑖(𝑉,𝑸(𝑗)) ≅ 𝐻𝑖(𝑊,𝑸(𝑗))

in this range. Passing to the colimit, one has𝐻𝑖(𝑉,𝑸(𝑗)) ≅ 𝐻𝑖(𝑘(𝑉), 𝑸(𝑗)).

14 Reduction. The action of 𝐶𝑝 on𝐻𝑖(𝑘(𝑈), 𝑸(𝑗)) is trivial if 𝑖 < 𝑗.

15. If 𝐵 is smooth over a perfect field 𝑘, then one may compare rational motivic coho-
mology of 𝐵 in the sense of Voevodsky with the Ext groups in the∞-categoryDM(𝐵; 𝑸)
of rational motives:

𝐻𝑖(𝐵, 𝑸(𝑗)) ≅ [1𝐵, 1𝐵(𝑗)[𝑖]]DM(𝐵;𝑸).
In our case, we are interested in the situation in which 𝐵 is Spec of the function

fields 𝑘(𝑇) and 𝑘(𝑈). We note that these fields are not perfect, but for any field 𝐾 with
perfection𝐾perf, the∞-categoryDM(𝐾;𝑸) is equivalent toDM(𝐾perf; 𝑸), so we are free
to pass to the context originally contemplated by Voevodsky.

Consequently, we write𝐾 ≔ 𝑘(𝑇)perf, and 𝐿 ≔ 𝐾(𝑦)/(𝑦𝑝 − 𝑦 − 𝑎).

The task is thus to analyze the Galois action of the cyclic group 𝐶𝑝 on the rational
motivic cohomology of 𝐿 ≅ 𝐾[𝑦]/(𝑦𝑝 − 𝑦 − 𝑎) induced by the action 𝑦 ↦ 𝑦 + 1. The
final reduction of Conjecture 1 now is

16 Reduction. The action of 𝐶𝑝 on𝐻𝑖(𝐿, 𝑸(𝑗)) is trivial if 𝑖 < 𝑗.

This is Conjecture 2. Equivalently, if we abuse notation slightly and write 𝐿 again for the
Artin motive of 𝐾 ⊂ 𝐿, then we have shown that Conjecture 1 would follow from the
triviality of the action of 𝐶𝑝 on the cohomology 𝐻𝑖(𝐾, 𝐿(𝑗)) of the Artin–Tate motive
𝐿(𝑗) for 𝑖 < 𝑗.
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