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Abstract. We introduce, for every integer n ≥ 1, the notion of an n-relative

category and show that the category of the small n-relative categories is a
model for the homotopy theory of n-fold homotopy theories, i.e. homotopy

theories of . . . of homotopy theories.

1. Background and motivation

In this introduction we

• recall some results of (higher) homotopy theory, and
• explain how they led to the current manuscript.

We start with

1.1. Rezk and re-Rezk. In [R] Charles Rezk constructed a left Bousfield local-
ization of the Reedy structure on the category sS of small simplicial spaces (i.e.
bisimplicial sets) and showed it to be a model for the homotopy theory of homotopy
theories.

Furthermore it was noted in [B] (and a proof thereof can be found in [Lu, §1])
that iteration of Rezk’s construction yields, for every integer n > 1, a left Bousfield
localization of the Reedy structure on the category snS of small n-simplicial spaces
(i.e. (n + 1)-simplicial sets) which is a model for the homotopy theory of n-fold
homotopy theories, i.e. homotopy theories of . . . of homotopy theories.

We will call the weak equivalences in these left Bousfield localization (which are
often referred to as complete Segal equivalences) just Rezk equivalences.

Rezk’s original result also gave rise to the following result on

1.2. Relative categories. Recall that a relative category is a pair (C, wC) con-
sisting of a category C and a subcategory wC ⊂ C which contains all the objects
of C and of which the maps are called weak equivalences.

Then it was shown in [BK] that Rezk’s model structure on sS (1.1) can be
lifted to a Quillen equivalent Rezk structure on the category RelCat of the small
relative categories, the weak equivalences of which will also (1.1) be called Rezk
equivalences.

The category RelCat is connected to sS by a simplicial nerve functor N : RelCat→
sS with the property that a map f ∈ RelCat is a Rezk equivalence iff the map
Nf ∈ sS is so. Moreover if we denote by Rk the subcategories of the Rezk equiva-
lences in both RelCat and sS, then the simplicial nerve functor has the property
that
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(i) the relative functor

N : (RelCat,Rk) −→ (sS,Rk)

is a homotopy equivalence of relative categories, in the sense that there
exists a relative functor

M : (sS,Rk) −→ (RelCat,Rk)

called a homotopy inverse of N such that the compositions MN and NM
can be connected to the identity functors of RelCat and sS by finite
zigzags of natural weak equivalences.

This in turn implies that

(ii) the relative category (RelCat,Rk) is, just like (sS,Rk), a model for the
homotopy theory of homotopy theories.

The proof of all this is essentially a relative version of the proof of the following
classical result of Bob Thomason.

1.3. Thomason’s result. In [T] Bob Thomason lifted the usual model structure
on the category S of small spaces (i.e. simplicial sets) to a Quillen equivalent one
on the category Cat of small categories and noted that these two categories were
connected by the nerve functor N : Cat → S which has the property that a map
f ∈ Cat is a weak equivalence iff Nf ∈ S is so. It follows that, if W denotes the
categories of weak equivalences in both Cat and S, then

(i) the relative functor N : (Cat,W )→ (S,W ) is a homotopy equivalence of
relative categories (1.2(i))

which in turn implies that

(ii) the relative category (Cat,W ) is, just like (S,W ) a model for the theory
of homotopy types.

His proof was however far from simple as it involved notions like two-fold sub-
division and so-called Dwyer maps.

We end with recalling

1.4. A result of Dana Latch. In [La] Dana Latch noted that, if one just wanted
to prove 1.3(i) and 1.3(ii), one could do this by an argument that was much simpler
than Thomason’s and that, instead of the cumbersome two-fold subdivisions and
Dwyer maps, involved the rather natural notion of the category of simplices of a
simplicial set.

Now we can finally discuss

1.5. The current paper. The results mentioned in 1.1 and 1.2 above suggest
that, for every integer n > 1, there might exist some generalization of the notion
of a relative category such that the category of such generalized relative categories
admits a model structure which is Quillen equivalent to the Rezk structure on snS.

As however we did not see how to attack this question we turned to a much
simpler one suggested by the result of Dana Latch that was mentioned in 1.4 above,
namely to prove 1.2(i) directly by showing that
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• the simplicial nerve functor

N : (RelCat,Rk) −→ (sS,Rk)

has an appropriately defined relative category of bisimplices functor

Kδ : (sS,Rk) −→ (RelCat,Rk)

as a homotopy inverse.

It turned out that not only could we do this, but the relative simplicity of
our proof suggested that a similar proof might work for appropriately generalized
relative categories. And indeed, after the necessary trial and error and frustration,
we discovered a notion of what we will call n-relative categories which fitted the
bill.

Hence the current manuscript.

1.6. An overview. There are six more sections.
In section 2 we introduce the category RelnCat of n-relative categories and in

section 3 we formulate our main result. This involves

• The n-simplicial nerve functor N : RelnCat→ snS (1.1), and
• the n-relative category of multisimplices functor Kδ : snS → RelnCat

and states that

• these two functors are homotopy inverses (1.2) of each other with respect
to the Rezk structure on snS (1.1) and the induced (by N) Rezk structure
on RelnCat

which implies that

• RelnCat, just like snS (1.1), is a model for the homotopy theory of n-fold
homotopy theories.

In section 4 we then prove this result modulo two key lemmas which we prove
in sections 5 and 6 respectively.

• The first lemma states the property that we wanted n-relative categories
to have, namely that the associated n-simplicial nerve functor, just like
the classical nerve functor, has a left adjoint which is a left inverse, and
which after the necessary trial and error led to the current definition.

• The second lemma is the key ingredient in the proof of our main result.
It states that the composite functor NKδ preserves colimits and is an
n-relative version of the key ingredient in Dana Latch’s result (1.4) [La,
Lemma B].

Finally in an appendix (section 7) we describe two relations between the cate-
gories RelnCat and Reln+1Cat which one would expect higher homotopy theories
to have.

1.7. Acknowledgement. Chris Schommer–Pries closely read an earlier version of
this paper and offered many useful comments. His observations and insights have
led to major changes in the structure of our argument, and our understanding of
n-relative categories has grown significantly as a result. We are grateful to him for
his help.
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2. n-Relative categories

After a brief review of relative categories we

• introduce n-relative categories (n ≥ 0) and
• describe some simple but useful examples which we will need in the next

section.

2.1. Relative categories. A relative category is a pair (C,W ) (often denoted
by just C) consisting of a category C (the underlying category) and a subcat-
egory W ⊂ C, the maps of which are called the weak equivalences, and which
is only subject to the condition that it contains all the objects of C (and hence all
the identity maps).

The category of small relative categories and the relative (i.e. weak equivalence
preserving) functors between them will be denoted by RelCat.

Two relative functors C →D are called naturally weakly equivalent if they
can be connected by a finite zigzag of natural weak equivalences and a relative
functor f : C →D will be called a homotopy equivalence if there exists a relative
functor g : D → C (called a homotopy inverse of f) such that the compositions
gf and fg are naturally weakly equivalent to 1C and 1D respectively.

2.2. What to look for in a generalization. In trying to generalize the notion
of a relative category we were looking for

∗ a notion of n-relative category for which the associated n-simplicial nerve
functor to n-simplicial spaces, just like the classical nerve functor, has a
left adjoint which is also a left inverse.

Motivated by the fact that in an n-simplicial space (i.e. an (n+1)-simplicial set),
just like in a simplicial space, the “space direction” plays a different role than “the
n simplicial directions”, we start with considering sequences

C = (aC, v1C, . . . , vnC, wC) (n ≥ 0)

consisting of a category aC and subcategories v1C, . . . , vnC and wC ⊂ aC,
each of which contains all the objects of aC and which together with aC form a
commutative diagram with 2n arrows of the form

wC

�� ��

v1C

��

· · · vnC

��

aC

Such a sequence can be considered to consist of n relative categories v1C, . . . ,
vnC which each has the same category of weak equivalences wC and an ambient
category aC which encodes the relations between the viC (1 ≤ i ≤ n).

However the associated n-simplicial nerve functor (3.1) will only recognize those
maps in aC which are finite compositions of maps in the viC (1 ≤ i ≤ n) and only
those relations which are a consequence of the commutativity of those squares in
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aC which are of the form

· x1 //

y1

��

·
y2

��
·

x2

// ·

in which x1, x2 ∈ viC and y1, y2 ∈ vjC (where i and j are not necessarily distinct).
In order that the associated n-simplicial nerve functor has a left adjoint which

is a left inverse we therefore have to impose some restrictions on aC and define
n-relative categories as follows.

2.3. n-Relative categories. An n-relative category C (n ≥ 0) will be an (n+
2)-tuple

C = (aC, v1C, . . . , vnC, wC)

consisting of a category aC and subcategories

v1C, . . . , vnC and wC ⊂ aC

each of which contains all the objects of C and which form a commutative diagram
with 2n arrows of the form

wC

�� ��

v1C

��

· · · vnC

��

aC

and where aC is subject to the condition that

(i) every map in aC is a finite composition of maps in the viC (1 ≤ i ≤ n),
and

(ii) every relation in aC is a consequence of the commutativity relations in
the viC (1 ≤ i ≤ n) and the commutativity of those squares in aC which
are of the form

· x1 //

y1

��

·
y2

��
·

x2

// ·

in which x1, x2 ∈ viC and y1, y2 ∈ vjC and 1 ≤ i < j ≤ n.

In particular

(iii) if zi ∈ viC and zj ∈ vjC (i 6= j) are such that zi = zj , then this is a
consequence of the commutativity of the square

· zi //

zj

��

·
1

��
· 1 // ·
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2.4. Some comments. In an n-relative category C, the categories v1C, . . . , vnC
are relative categories which have wC as their category of weak equivalences, and
we will therefore sometimes refer to the maps of wC as weak equivalences.

Moreover the category aC is more than a common underlying category for the
viC (1 ≤ i ≤ n) (as it may contain additional relations) and will therefore be called
the ambient category.

Also note that

∗ A 1-relative category C is essentially just an ordinary relative category, as
in that case aC = v1C

and that

∗ a 0-relative category C is essentially a maxiamal relative category, i.e. a
relative category in which all maps are weak equivalences, as in that case
aC = wC.

2.5. Relative functors. A relative functor f : C → D between two n-relative
categories C and D will be a functor f : aC → aD such that

fwC ⊂ wD and fviC ⊂ viD for all 1 ≤ i ≤ n.

We will denote by RelnCat the resulting category of the small n-relative cate-
gories and the relative functors between them.

2.6. Some examples. Some rather simple but useful examples of n-relative cate-
gories are the following.

For every integer p ≥ 0 let p denote the category

0 −→ · · · −→ p

and let |p| ⊂ p be its subcategory which consists of the objects and their identity
maps only. Then we will denote

(i) by pw ∈ RelnCat the object such that

apw = vip
w = wpw = p for all 1 ≤ i ≤ n

and

(ii) by pvi ∈ RelnCat the object such that

apvi = vip
vi = p and vjp

vi = wpvi = |p| for j 6= i .

A simple calculation then yields that, for every sequence of integers pn, . . . , p1, q ≥
0,

(iii) pvnn × · · · × pv11 ∈ RelnCat is such that

a(pvnn × · · · × pv11 ) = pn × · · · × p1

w(pvnn × · · · × pv11 ) = |pn| × · · · × |p1| and

vi(p
vn
n × · · · × pv11 ) = |pn| × · · · × pi × · · · × |p1| (1 ≤ i ≤ n)

and

(iv) pvnn × · · · × pv11 × qw ∈ RelnCat is such that

a(pvnn × · · · × pv11 × qw) = pn × · · · × p1 × q

w(pvnn × · · · × pv11 × qw) = |pn| × · · · × |p1| × q and

vi(p
vn
n × · · · × pv11 × qw) = |pn| × · · · × pi × · · · × |p1| × q (1 ≤ i ≤ n)

Moreover we will denote
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(v) by δpvi (1 ≤ i ≤ n) and δpw ∈ RelnCat the objects obtained by applying
the following construction to the above pvii (1 ≤ i ≤ n) and pw.

2.7. The (terminal) division of an n-relative category. Motivated by the
(terminal) subdivision of a relative category [BK, 4.2], we define, for an object
C ∈ RelnCat, its division δC ∈ RelnCat as follows.

(i) a δC is the category which as as objects the functors p→ aC (p ≥ 0) and
as maps

(x1 : p1 → aC) −→ (x2 : p2 → aC)

the commutative diagrams of the form

p1

f
//

x1
!!

p2

x2
}}

aC

and

(ii) viδC (1 ≤ i ≤ n) and wδC consists of those maps as in (i) for which the
induced map

x1p1 = x2fp1 −→ x2p2

is in viC or wC respectively.

Clearly δC is natural in C.
Moreover

(iii) δC comes with a natural (terminal) projection map

πt : δC −→ C ∈ RelnCat

which sends each object x : p→ C ∈ δC to the object xp ∈ C and which
clearly has the following property:

2.8. Proposition. A map f ∈ δC is in viδC (1 ≤ i ≤ n) or wδC iff πtf is in
viC or wC respectively.

3. Formulation of the main result

To formulate our main result we need the following three notions.

3.1. The n-simplicial nerve functor. The n-simplicial nerver functor will
be the right adjoint in the adjunction (1.1 and 2.5)

K : snS ←→ RelnCat :N (n ≥ 0)

in which

(i) N sends an object C ∈ RelnCat to the (n + 1)-simplicial set which has
as its (pn, . . . , p1, q)-simplices (pn, . . . , p1, q ≥ 0) the maps (2.6)

pvnn × · · · × pv11 × qw −→ C ∈ RelnCat

and

(ii) K is the colimit preserving functor which, for every n+1 integers pn, . . . , p1, q ≥
0, sends the standard (pn, . . . , p1, q)-simplex ∆[pn, . . . , p1, q] to

pvnn × · · · × pvn1 × qw ∈ RelnCat
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3.2. The n-relative categories of multisimplicies functor. The n-relative
categories of multisimplices functor will be the colimit preserving functor

Kδ : snS −→ RelnCat (n ≥ 0)

which sends each standard multisimplex ∆[pn, . . . , p1, q] (pn, . . . , p1, q ≥ 0) to the
object (2.6)

δpvnn × · · · × δp
v1
1 × δqw ∈ RelnCat,

It comes with a (terminal) projection map which, with a slight abuse of
notation, we denote by

πt : Kδ −→ K

and which is induced by the (n+1)-fold (terminal) projection map Exexpandme2p7piii

(∗) δpvnn × · · · δp
v1
1 × δqw

πt×···×πt−−−−−−→ pvnn × · · ·p
v1
1 × qw

3.3. Reedy and Rezk equivalences in RelnCat. A map f ∈ RelnCat (n ≥ 1)
will be called a Reedy or a Rezk equivalence iff the map nf ∈ snS is (1.1), and
we will denote by

Ry and Rk ⊂ snS and Ry and Rk ⊂ RelnCat

the subcategories of the Reedy and Rezk equivalences.

We can now state our main result.

3.4. Theorem.

(i) The functors N and Kδ induce inverse homotopy equivalences (2.1)

N : (RelnCat,Ry) � (snS,Ry) :Kδ

which, in view of the fact that the Rezk equivalences in snS are the weak
equivalences in a left Bousfield localization of the Reedy structure, implies
that

(ii) they also induce homotopy equivalences

N : (RelnCat,Rk) � (snS,Rk) :Kδ

which means that
(iii) just like (snS,Rk) (1.1), (RelnCat,Rk) is a homotopy theory of n-fold

homotopy theories.

4. A proof of our main result

We start with a proof of several auxiliary propositions and the formulation of
two key lemmas which we will prove in sections 5 and 6 respectively.

4.1. Proposition. For every standard multisimplex ∆[pn, . . . , p1, q] ∈ snS (n ≥ 1),
the map (3.2)

Nπt : NKδ∆[pn, . . . , p1, q] −→ NK∆[pn, . . . , p1, q] ∈ snS

is a Reedy equivalence.
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Proof. As

Kδ∆[pn, . . . , p1, q] = δpvnn × · · · × δp
v1
1 × δqw

and

K∆[pn, . . . , p1, q] = pvnn × · · · × pv11 × qw

we have to prove that application of the functor N to the map in 3.2(∗) above
yields a Reedy equivalence. But N is a right adjoint and hence preserves products
and therefore Reedy equivalences and it therefore suffices to show that each of the
maps

Nπt : Nδp
vi
i −→ Npvii and Nπt : Nδa

w −→ Nqw

is a Reedy equivalence.
To do this let

τ : pvi −→ δpvi and τ : pw −→ δpw

be the maps which send an object b ∈ p to the object

b = (0→ · · · → b)
incl.−−−−→ (0→ · · · → p) ∈ δpvi or δpw .

Then πtτ = 1 and there are obvious maps

h : δpvi × 1w −→ δpvi and h : δpw × 1w −→ δpw

such that h0 = 1 and h1 = τπt.
The desired result then follows readily from the observation that if

(i) two maps f, g : C → D ∈ RelnCat are strictly homotopic in the sense
that there exists a map h : C × 1w →D ∈ RelnCat connecting them,

then

(ii) the maps Nf,Ng : NC → ND ∈ snS are strictly homotopic in the sense
that there exists a map k : NC ×∆[0, . . . , 0, 1] → ND ∈ snS connecting
them,

where

(iii) k is the composition

NC ×∆[0, . . . , 1]
η−−→ NC ×NK∆[0, . . . , 0, 1]

Id−−−→ NC ×N1w
≈−−−→ N(C × 1w)

h−−→ ND �

4.2. Proposition. For every standard multisimplex ∆[pn, . . . , p1, q] ∈ snS the unit
map (3.1)

η∆[pn, . . . , p1, q] : ∆[pn, . . . , p1, q] −→ NK∆[pn, . . . , p1, q] ∈ snS

is a Reedy equivalence.

Proof. Note that

∆[pn, . . . , p1, q] = ∆[pn,—]× · · · ×∆[—, pi,—]× · · · ×∆[—, q]

where — denotes a (possibly empty) sequence of 0’s. A straightforward calculation
then yields that the map

η∆[—, pi,—]: ∆[—, pi,—] −→ NK∆[—, pi,—] = Npvii ∈ snS
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is an isomorphism for all 1 ≤ i ≤ n and that

η∆][—, q] : ∆[—, q] −→ NK∆[—, q] ∈ snS

is a Reedy equivalence and the desired result now follows from the fact that N is a
right adjoint and hence preserves products and therefore Reedy equivalences. �

4.3. The first key lemma. For every object C ∈ RelnCat (n ≥ 0) the counit
map (3.1)

εC : KNC −→ C ∈ RelnCat

is an isomorphism, i.e. K is not only a left adjoint but also a left inverse of N .
A proof will be given in section 5.

We call this a key lemma because it states the property that we wanted n-relative
categories to have and which therefore led to the, a priori mysterious, restriction
imposed in 2.3(ii).

Our other preliminary results involve the following notion.

4.4. The (ordinary) categories of multisimplices functor. Let ∆[−] ⊂ snS
(n ≥ 0) denote the full cubcategory spanned by the standard multisimplices.

Given an object X ∈ snS, its (ordinary) category of multisimplices ∆X then
is defined as the overcategory

∆X = ∆[−] ↓ X

Clearly ∆X is natural in X and comes with a forgetful functor

F : ∆X −→ snS

which sends an object ∆[pn, . . . , p1, q]→ X ∈ ∆X to the object ∆[pn, · · · , p1, q] ∈
snS.

4.5. Proposition. For every object X ∈ snS the category ∆X is a Reedy category
with fibrant constants [H, 15.10.1(2)].

Proof. This is a straightforward calculation. �

4.6. Proposition. For every object X ∈ snS, the obvious map

colim∆X F −→ X ∈ snS

is an isomorphism.

Proof. We have to show that in every multidimension (sn, . . . , s1, t) this map is 1-1
and onto.

That it is onto follows from the fact that, for every (sn, . . . , s1, t)-simplex e ∈ X,
the associated map ē : ∆[sn, . . . , s1, t] → X ∈ snS sends the generating multisim-
plex of the standard multisimplex to e.

That it is also 1-1 follows from the observation that every pair consisting of

(i) a map f̄ : ∆[pn, . . . , p1, q]→ X ∈ snS (pn, . . . , p1, q ≥ 0) and
(ii) an (sn, . . . , s1, t)-simplex h ∈ ∆[pn, . . . , p1, q] such that f̄h = e
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gives rise to a commutative diagram

∆[sn, . . . , s1, t]
ē
++

h̄
��

X

∆[pn, . . . , p1, q]
f̄

33 �

4.7. The second key lemma. For every object X ∈ snS the obvious map

colim∆X NKδF −→ NKδX ∈ snS

is an isomorphism.
A proof will be given in section 6.

We call this a key lemma because it is the key ingredient in the proof of our
main result which is not surprising as it is an n-relative version of the lemma
[La, Lemma B] of Dana Latch, which was the key ingredient in the proof of her
result.

Now we are ready for a proof of our main result.

4.8. A proof of theorem 3.4. To prove that the functors NKδ and 1snS are
naturally Reedy equivalent we consider, for every object X ∈ snS, the commutative
diagram (3.1, 3.2, 4.2 and 4.4)

colim∆X NKδF
NπtF //

��

colim∆X NKF

��

colim∆X F
ηF

oo

��

NKδX
NπtX // NKX X

ηX
oo

in which the vertical maps are the obvious ones.
The vertical maps on the outside are, in view of 4.7 and 4.6, isomorphisms and it

thus suffices to prove that the upper maps are Reedy equivalences. But this follows
immediately from 4.1, 4.2, 4.5 and the result [H, 15.10.9(2)] that the colimit of an
objectwise weak equivalence between Reedy cofibrant diagrams indexed by a Reedy
category with fibrant constants is also a weak equivalence.

Note that the fact that these four maps are Reedy equivalences also implies
that the functor NKδ preserves Reedy equivalences and so does therefore (3.3) the
functor Kδ.

To prove that the functors KδN and 1RelnCat are also naturally Reedy equivalent
it suffices to show that, for every object C ∈ RelnCat, both maps in the sequence

KδNC
πtNC−−−−−−−→ KNC

εC−−−−−→ C ∈ RelnCat

are Reedy equivalences. For the second map this follows from 4.3. To deal with
the first one we have to show that NπtNC is a Reedy equivalence in snS. This we
do by considering the above diagram for X ∈ NC

colim∆NC NKδF
NπtF //

��

colim∆NC NKF

��

colim∆NC F
ηF

oo

��

NKδNC
NπtNC

// NKNC NC
ηNC

oo

and then noting that all its maps are Reedy equivalences in view of the fact that
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(i) the upper and the outside vertical maps are so by the above,
(ii) the map ηNC is an isomorphism because NεC (4.3) and the composition

NC
ηNC−−−→ NKNC

NεC−−−→ NC are so, and
(iii) Reedy equivalences have the two out of three property.

5. A proof of the first key lemma (4.3)

To prove our first key lemma we need an n-relative cersion of proposition 4.6
which involves the following notion of (ordinary) categories of multisimplices (of
the n-simplicial nerve) of an n-relative category.

5.1. The category of multisimplices of an n-relative category. Given an
object C ∈ RelnCat, its (ordinary) category of multisimplices ∆C is defined
as the overcategory (3.1 and 4.4)

∆C = K∆[−] ↓ C
Clearly ∆C is natural in C and comes with a forgetful functor

G : ∆C −→ RelnCat

which sends an objectK∆[pn, . . . , p1, q]→ C ∈ ∆C to the objectK∆[pn, . . . , p1, q] ∈
RelnCat.

As a first step in proving the first key lemma we then note the following

5.2. Proposition. For every object C ∈ RelnCat, the obvious map

colim∆C G −→ C ∈ RelnCat

is an isomorphism.

Proof. We first note that

aK∆[pn, . . . , p1, q] = a(pvnn × · · · × pv11 × qw) = pn × · · · × p1 × q

is a poset which has an object, a generating map and a relation for every subobject

sn × · · · × s1 × t ⊂ pn × · · · × p1 × q

for which sn + · · ·+ s1 + t is 0, 1 or 2.
This readily implies that

∗ to compute colim∆C G it suffices to restrict the computation to the full
subcategory of ∆C spanned by the maps into C from respectively the
objects which are isomorphic to (2.6)

(i) 0w, 1w and 1vi (1 ≤ i ≤ n)
(ii) 2w and 2vi and 1vi × 1w (1 ≤ i ≤ n), and
(iii) 1vi × 1vj (1 ≤ i < j ≤ n).

Arguments similar to the ones used in the proof of proposition 4.6 then yield
that the maps mantioned in (i) above give rise to isomorphisms

w colim∆C G ≈ wC and vi colim∆C G ≈ viC (1 ≤ i ≤ n).

As these isomorphisms are isomorphisms of categories it follow that the map man-
tioned in (ii) above do not give rise to any additional structure.

That these isomorphisms extend to isomorphisms colim∆C G ≈ C ∈ RelnCat
now follows from the fact that the maps mentioned in (iii) above give rise to exactly
the commutative squares that were required by 2.3(ii) above. �



n-RELATIVE CATEGORIES 13

The first key lemma can now be obtained by the following rather formal argument

5.3. A proof of the first key lemma (4.3). Let ∆NC and F : ∆NC → snS
be as in 4.4. Then the adjunction K ↔ N (3.1) gives rise to an isomorphism
∆NC ≈ ∆C which sends each map

y : ∆[pn, . . . , p1, q] −→ NC ∈ snS

to the map

K∆[pn, . . . , p1, q] −→ C ∈ RelnCat

which is the composition

K∆[pn, . . . , p1, q]
Ky−−−−−−→ KNC

ε−−−−→ C

whiere ε denotes the counit of the adjunction.
These sequences combine to form the commutative square

colim∆NC KF //

��

KNC

��

colim∆C G // C

in which the map on the left is induced by the isomorphism between the diagrams
KF and G and hence is an isomorphism. Moreover the map at the bottom was
shown to be an isomorphism in 5.2 and this map of the top is an isomorphism in
view of proposition 4.6 and the fact that the functor K as a left adjoint commutes
with colimits. Thus the map on the right is also an isomorphism.

6. A proof of the second key lemma (4.7)

We start with a result (6.1) which is a variation on proposition 4.6.
Using this we then (in 6.2) give an alternate description of the n-relative cate-

gories of multisimplices functor (3.2) which brings out its close relationship with
the (ordinary) categories of multisimplices functor of 4.4.

This in turn we use (in 6.3) to prove what is in some sense a generalization of
proposition 4.7 which we then use (in 6.4) to obtain proposition 4.7 itself.

6.1. Proposition. For every object X ∈ snS, the obvious map (4.6)

colim∆X ∆F −→ ∆X ∈ Cat (1.3)

is an isomorphism.

Proof. For every object e : ∆[sn, . . . , s1, t]→ X ∈ ∆X (sn, . . . , s1, t ≥ 0) e is the im-
age under the map ∆e : ∆∆[sn, . . . , s1, t]→ ∆X of the identity map ∆[sn, . . . , s1, t]→
∆[sn, . . . , s1, t] ∈ ∆∆[sn, . . . , s1, t]. This readily implies that the map colim∆X ∆F →
∆X is onto.

That it is also 1-1 follows from the observation that every pair consisting of

(i) a map f : ∆[pn, . . . , p1, q]→ X ∈ ∆X (pn, . . . , p1, q ≥ 0), and
(ii) an object h : ∆[sn, . . . , s1, t] → ∆[pn, . . . , p1, q] ∈ ∆∆[pn, . . . , p1, q] such

that fh = e
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gives rise to a commutative triangle

∆[sn, . . . , s1, t]
e
++

h
��

X

∆[pn, . . . , p1, q]
f

33 �

6.2. An alternate description of Kδ. It follow readily from the definitions in-
volved that

(i) for every sequence of cateogries pn, . . . , p1, q ≥ 0, there is a canonical iso-
morphism (4.4)

aKδ∆[pn, . . . , p1, q] ≈ ∆∆[pn, . . . , p1, q] = ∆[−] ↓ ∆[pn, . . . , p1, q]

Consequently one can

(ii) define an object ∆rel∆[pn, . . . , p1, q] which is canonically isomorphic with
Kδ∆[pn, . . . , p1, q] by endowing ∆∆[pn, . . . , p1, q] with the n-relative struc-
ture lifted from Kδ∆[pn, . . . , p1, q], and

(iii) define, for every object X ∈ snS, an object ∆relX ∈ RelnCat by the
formula (4.4)

∆relX = colim∆X ∆relF.

As the functors Kδ and ∆rel both preserve colimits it follows that

(iv) the functors Kδ and ∆rel are canonically isomorphic.

Moreover it follows from proposition 6.1 above and the fact that the ambient
category functor a : RelnCat→ Cat preserves colimits that

(v) a∆relX = ∆X for all X ∈ snS.

Using this alternate definition we now can state the following

6.3. A variation on proposition 4.7. Assume that

(i) T ∈ RelnCat and an object T ∈ T are such that aT is a poset and T is
a terminal object of aT , and that

(ii) for every pair of objects C,D ∈ RelnCat map(C,D) denotes the set of
maps C →D ∈ RelnCat.

Then

(iii) for every object X ∈ snS, the obvious map

colim∆X map(T ,∆relT ) −→ map(T ,∆relX)

is an isomorphism.

Proof. That this map is onto follows readily from the fact that every map e : T →
∆relX ∈ RelnCat admits a unique factorization of the form

T
e1−−−→ ∆rel∆[sn, . . . , s1, t]

∆rele2−−−−−−→ ∆relX

in which e1 sends T to the identity map of ∆[sn, . . . , s1, t] and e2 sends this map
to eT .

That it is also 1-1 then follows from the observation that every pair consisting
of

(i) a factorization of e of the form

T
f1−−−→ ∆rel∆[pn, . . . , p1, q]

∆relf2−−−−−−→ ∆relX
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(ii) and an object

h : ∆[sn, . . . , s1, t] −→ ∆[pn, . . . , p1, q] ∈ ∆rel∆[pn, . . . , p1, q]

such that f2h = e2

gives rise to a commutative diagram

∆rel∆[sn, . . . , s1, t]
∆rele2

**
∆relh

��

T

e1
55

f1 ))

∆relX

∆rel∆[pn, . . . , p1, q]
∆relf2

44 �

6.4. A proof of the second key lemma (4.7). Proposition 4.7 now follows read-
ily from 6.2(iv) and proposition 6.3 above and the fact that the n-relative categories

pvnn × · · · × pv11 × qw

involved in the definition of the n-simplicial nerve functor N (3.1) have the prop-
erties mentioned in 6.3(i) above.

7. Appendix

In this appendix we note that the categories RelnCat (n ≥ 1) have two addi-
tional properties which one would expect a homotopy theory of homotopy theories
to have:

A. There there exists a functor RelnCat → Reln+1Cat which has a left
inverse right adjoint.

B. That every object of Reln+1Cat gives rise to a category enriched over
RelnCat which suggests the possibility that “a map in Reln+1Cat is a
Rezk equivalence (3.3) iff the induced map between these enriched cate-
gories is a kind of DK-equivalence”.

To deal with A we note that a straightforward calculation yields:

7.1. Proposition. For every integer n ≥ 1 the functor

RelnCat −→ Reln+1Cat

which sends

(aC, v1C, . . . , vnC, wC) to (aC, v1C, . . . , vnC, wC, wC)

has a right adjoint left inverse which sends

(aD, v1D, . . . , vn+1D, wD) to (āD, v1D, . . . , vnD, wD)

where āD ⊂ aD denotes the subcategory which consists of the finite compositions
of maps in the viD (1 ≤ i ≤ n).
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We deal with B by means of an n-relative version of the Grothendieck enrichment
of [DHKS, 3.4 and 3.5].

To do this we start with recalling

7.2. Types of zigzags. The type of a zigzag of maps in a category C from an
object X to an object Y

X
f1 · · · · ·

fm
Y (m ≥ 0)

will be the pair T = (T+, T−) of complementary subsets of the set of integers
{1, . . . ,m} such that i ∈ T+ whenever fi is a forward map and i ∈ T− otherwise.

These types can be considered as the objects of a category of types T which
has, for every two types (T+, T−) and (T ′+, T

′
−) of length m and m′ respectively,

as maps t : (T+, T−) → (T ′+, T
′
−) the weakly monotonic maps t : {1, . . . ,m} →

{1, . . . ,m′} such that

tT+ ⊂ T ′+ and tT− ⊂ T ′− .

With these types one then associates

7.3. n-Relative arrow categories. Given an object C ∈ Reln+1Cat let, as in
7.1, āC ⊂ aC denote the subcategory which consists of the finite compositions of
maps of the viC (1 ≤ i ≤ n).

For every pair of objectsX,Y ∈ C and type T (7.2) we then denote by CT (X,Y ) ∈
RelnCat the n-relative arrow category which has

(i) as objects the zigzags of type T in C between X and Y in which the
backward maps are in āC,

(ii) as maps in viC
T (X,Y ) (1 ≤ i ≤ n) and wCT (X,Y ) between two such

zigzags the commutative diagrams of the form

X

1

��

· · · ·

��

·

��

Y

1

��

X · · · · · Y

in which the vertical maps are in viC and wC respectively, and
(iii) as maps in aCT (X,Y ) the finite compositions of maps of the viC

T (X,Y )
(1 ≤ i ≤ n).

These arrow categories in turn give rise to

7.4. T -diagrams of arrow categories. Given an object C ∈ RelnCat and ob-
jects X,Y ∈ C, one can form a T -diagram of arrow categories

C(T )(X,Y ) : T −→ RelnCat

which assigns to every object T ∈ T the arrow category

CT (X,Y ) ∈ RelnCat

and to every map t : T → T ′ ∈ T the map

t∗ : CT (X,Y ) −→ CT ′
(X,Y ) ∈ RelnCat

which sends a zigzag of type T

X
f1 · · · · ·

fm
Y
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to the zigzag of type T ′

X
f ′
1 · · · · ·

f ′
m

Y

in which each f ′j (1 ≤ j ≤ m′) is the composition of the fi with ti = j or, in no
such i exists, the appropriate identity map.

Now we can form

7.5. The Grothendieck construction on C(T )(X,Y ). Given an object C ∈
Reln+1Cat and objectsX,Y ∈ C the Grothendieck construction on C(T )(X,Y )
is the object

GrC(T )(X,Y ) ∈ RelnCat

which has

(i) as objects the zigzags in C between X and Y in which the backward maps
are in āC, i.e. pairs (T,Z) consisting of objects

T ∈ T and Z ∈ CT (X,Y )

and

(ii) for every two such objects (T,Z) and (T ′, Z ′), as maps (T,Z) → (T ′, Z ′)
the pairs (t, z) consisting of maps

t : T −→ T ′ ∈ T and z : t∗Z −→ Z ′ ∈ CT ′
(X,Y )

and in which

(iii) for every two composable maps (t, z) and (t′, z′) their composition is de-
fined by the formula

(t′, z′)(t, z) =
(
t′t, z′(t∗z)

)

Together these Grothendieck constructions give rise to

7.6. A Grothendieck enrichment. Given an object C ∈ Reln+1Cat we now de-

fine its Grothendieck enrichment as the category GrC(T ) enriched over RelnCat
which

(i) has the same objects as C,
(ii) has for every two objects X,Y ∈ C, as it’s hom-object the n-relative

category C(T )(X,Y ), and
(iii) has, for every three objects X, Y and Z ∈ C as composition

GrC(T )(X,Y )×GrC(T )(X,Y ) −→ GrC(T )(X,Z)

the function induced by the compositions of the zigzags involved.
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