SPECTRAL MACKEY FUNCTORS AND EQUIVARIANT ALGEBRAIC K-THEORY

(II)
CLARK BARWICK, SAUL GLASMAN, AND JAY SHAH

ABSTRACT. We study the “higher algebra” of spectral Mackey functors, which the first
named author introduced in Part I of this paper. In particular, armed with our new the-
ory of symmetric promonoidal co-categories and a suitable generalization of the second
named author’s Day convolution, we endow the co-category of Mackey functors with a well-
behaved symmetric monoidal structure. This makes it possible to speak of spectral Green
functors for any operad O. We also answer a question of Mathew, proving that the algebraic
K-theory of group actions is lax symmetric monoidal. We also show that the algebraic K-
theory of derived stacks provides an example. Finally, we give a very short, new proof of the
equivariant Barratt—-Priddy-Quillen theorem, which states that the algebraic K-theory of
the category of finite G-sets is simply the G-equivariant sphere spectrum.
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This paper is part of an effort to give a complete description of the structures available on
the algebraic K-theory of varieties and schemes (and even of various derived stacks) with

all their concomitant functorialities and homotopy coherences.

So suppose X a scheme (quasicompact and quasiseparated). The derived tensor product
®" on perfect complexes on X defines a symmetric monoidal structure on the derived cate-

gory DY 7 of perfect complexes on X. With a little more effort, one can lift this structure to
a symmetric monoidal structure on the stable co-category of perfect complexes on X. This

suffices to get a product on algebraic K-theory
®: K(X) AK(X) — K(X)
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that is associative and commutative up to coherent homotopy. Thus, K(X) has not only
the structure of a connective spectrum, but also the structure of a connective E, ring spec-
trum. This is an exceedingly rich structure: not only do the homotopy groups K, (X) form
a graded commutative ring, but these homotopy groups also support (in a functorial way)
a tremendous amount of structure involving intricate higher homotopy operations called
Toda brackets. Still more information (in the form of Dyer-Lashof operations) can be found

on the F,-cohomology of K(X).

Now for any morphism f : Y — X of schemes, the derived functor L f* : D;f{"h — ?,mh

on the category of complexes with quasicoherent cohomology preserves perfect complexes,
and the resulting functor Lf™*: Dgfrf — Dﬁerf induces a morphism
F*: K(X) — K(Y)
on the algebraic K-theory. The functor L f* is compatible with the derived tensor product,
in the sense that for any perfect complexes E and F on X, there is a canonical isomorphism
Lf*(E®" F) = (Lf*E) ®" (Lf*F).

Again this can be lifted to the level of stable co-categories, whence the induced morphism
f* on K-theory turns out to be a morphism of connective E ring spectra. This implies
that the induced homomorphism on homotopy groups

is a homomorphism of graded commutative rings, and it must respect all the higher homo-
topy operations on K, (X) as well.

Furthermore, one can fit all the functors L f* together to get a presheaf U ~~> forf on
the big site of all schemes. This can even be viewed as a presheaf of stable co-categories,
which suffices to give us a presheaf of connective spectra U ~~> K(U). Since the morphisms
f* are morphisms of connective E_, ring spectra, we can regard this as presheaf of E ring
spectra.

If one wanted, one might “externalize” the product on K-theory in the following manner.
For any two schemes X and Y over a base scheme S, one may define an external tensor
product

s D7 D — DR,
by the assignment (E, F) ~~ (L pr] E) el (L pr; F). Note that we have natural equivalences
(Lf*E)=" (Lg*F) = L(f x 9)*(E=" F)
If we lift this to the level of stable co-categories, this gives rise to an external pairing
X: K(X)AK(Y) — K(X x5 Y),

which is functorial (contravariantly) in X and Y. The E_, product on K(X) can now be
obtained by pulling back this external pairing along the diagonal map:
K(X) A K(X) — K(X xg X) — K(X).
A morphism of schemes f: Y — X may induce morphisms in the covariant direction as

well. The pushforward Rf, : ngh — D?(wh generally will not preserve perfect complexes.
If, however, f is flat and proper, then for any perfect complex E, the complex R f, E is perfect.
Thus in this case R f, restricts to a functor Rf, : D{;"f — DK 7 and after lifting this to the
stable co-categories, we find an induced morphism

fo: KY)— K(X)
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on the algebraic K-theory. One thus obtains a covariant functor U ~~» K(U), but only with
respect to flat and proper morphisms. Observe, however, that since the functors R f, do not
commute with the derived tensor product, this functor is not valued in ring spectra.

Nevertheless, if f : Y — X is proper and flat, we do have an algebraic structure preserved
by Rf,. Observe that one may regard K(Y) as a module over the E_, ring spectrum K(X)
via f*. For any perfect complexes E on Y and F on X, one has a canonical equivalence

(Rf,E)®" F=RL(E®"Lf*F)
of perfect complexes; this is the usual projection formula [8, Exp. III, Pr. 3.7]. At the level of
K-theory, this translates to the observation that the morphism
Jor K(Y) — K(X)
is a morphism of connective K(X)-modules. The induced map on homotopy groups
for Ko (Y) — K, (X)

is therefore a homomorphism of K, (X)-modules.
Note that the external tensor product ®" is actually perfectly compatible with the push-
forwards, in the sense that one has natural equivalences

(Rf.E) =" (Rg,F) = R(f x g), (Er" F),

so on K-theory the external product ®: K(X) A K(Y) — K(X x4 Y) is functorial (covari-
antly) in X and Y.

Last, but certainly not least, there is a compatibility between the morphisms f* and the
morphisms g, , which results from the base change theorem for complexes [8, Exp. IV, Pr.
3.1.0]. Suppose that

vy sy
AT
X' — X
g
is a pullback square of schemes in which the horizontal maps g are flat and proper. Then the

canonical morphism

Lf*Rg, — Rg,Lf~

is an objectwise equivalence of functors Dgf,rf — D@erf . This translates to the condition that
there is a canonical homotopy

19, =g.f": KX') — K(Y)

of morphisms of K(X)-modules. In fact, this compatibility between the pullbacks and the
pushforwards, combined with the compatibility between f, and the external tensor product,
allows us to deduce the projection formula.

Let us summarize the structure we've found on the assignment U ~~» K(U):

» For every scheme X, we have an E_ ring spectrum K(X). Moreover, for any two
schemes X and Y over a base S, one has an external pairing

®: K(X)AK(Y) — K(X x5 Y).
» For every morphism f: Y — X, we have a pullback morphism
f*: K(X) — K(Y),

which is compatible with the external pairings and thus also with the E_, product.
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» For every flat and proper morphism f: Y — X, we have a pushforward morphism
Jo: K(Y) — K(X),

which is compatible with the external pairings and thus (in light of the next condi-
tion) also with the K(X)-module structure.
» For any pullback square

v L.y

7| %

X —X
g
in which the horizontal maps g are flat and proper, we have a canonical homotopy
g, =g.f": KX')— K().

of morphisms of K(X)-modules.

In this paper, we will demonstrate that these structures, along with all of their homotopy
coherences, are neatly packaged in a spectral Green functor on the category of schemes.

This structure is the origin of both the Gal(E/F)-equivariant E_  ring spectrum structure
on the algebraic K-theory of a Galois extension E > F and the cyclotomic structure on the
p-typical curves on a smooth Fp-scheme. For the former, see 9.7, and for the latter, see the
forthcoming paper [7].

In order to describe all the structure we see here, we study the “higher algebra” (in the
sense of Lurie’s book [19], for example) of spectral Mackey functors, which we introduced
in Part I of this paper [4]. The co-category of spectral Mackey functors turns out to admit
all the same well-behaved structures as the co-category of spectra itself. In particular, the
oo-category of Mackey functors admits a well-behaved symmetric monoidal structure. This,
combined with Saul Glasman’s convolution for co-categories [11], makes it possible to speak
of E, algebras, E_ algebras, or indeed O-algebras for any operad O in this context; these are
called O-Green functors.

We use this framework to provide a very simple answer to a question posed to us by Akhil
Mathew, in which we demonstrate that the functor that assigns to any co-category with an
action of a finite group G its equivariant algebraic K-theory is lax symmetric monoidal. We
also show that the algebraic K-theory of derived stacks with its transfer maps as described
above offers an example of an E, Green functor. We also use this theory to give a new proof
of the equivariant Barratt-Priddy-Quillen theorem, which states that the algebraic K-theory
of the category of finite G-sets is simply the G-equivariant sphere spectrum. (In fact, we will
generalize this result dramatically.)

Warning. Let us emphasize that E_ -Green functors for a finite group G are not equivalent
to algebras in G-equivariant spectra structured by the equivariant linear isometries operad
on a complete G-universe. To describe the latter in line with the discussion here — and to
find such structures on algebraic K-theory spectra - it is necessary to develop elements of
the theory of G-oco-categories. This we do in the forthcoming joint paper [5].

Acknowledgments. We have had very helpful conversations with David Ayala and Mike
Hill about the contents of this paper, its predecessor, and its sequels. We also thank the other
participants of the Bourbon Seminar - Emanuele Dotto, Marc Hoyois, Denis Nardin, and
Tomer Schlank - for their many, many insights.
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1. OCO-ANTI-OPERADS AND SYMMETRIC PROMONOIDAL OO-CATEGORIES

One of the many complications that arises when one combines an co-category and its
opposite in the way we have in our construction of the effective Burnside co-category is
that our constructions are extremely intolerant of asymmetries in basic definitions. This
complication rears its head the moment we want to contemplate the symmetric monoidal
structure on the Burnside co-category. In effect, the description of a symmetric monoidal
oo-categories given in [19, Ch. 4] forces one to specify the data of maps out of various tensor
products in a suitably compatible fashion. Thus symmetric monoidal categories are there
identified as certain co-operads. But since we are also working with opposites of symmetric
monoidal co-categories, we will come face-to-face with circumstances in which we must
identify the data of maps into various tensor products in a suitably compatible fashion. We
will call the resulting opposites of co-operads co-anti-operads.” Awkward as this may seem,
it cannot be avoided.

1.1. Notation. Let A(F) denote the following ordinary category. The objects will be finite sets,
and a morphism /] — I will be amap ] — I ; one composes y: K — J, with¢: ] — I,
by forming the composite

Kl/’]+£’1++4#’[+>
where y: I,, —> I, is the map that simply identifies the two added points. (Of course A(F)
is equivalent to the category F, of pointed finite sets, but we prefer to think of the objects
of A(F) as unpointed. This is the natural perspective on this category from the theory of
operator categories [1].)

1.2. Definition. (1.2.1) An co-anti-operad is an inner fibration
p: Oy — NA(F)?

whose opposite
P (Og)? —> NA(F)
is an co-operad.

(1.2.2) If p: Oy —> NA(F)” is an co-anti-operad, then an edge of Oy will be said to be
inert if it is cartesian over an edge of NA(F)? that corresponds to an inert map in
A(F), that is,amap ¢: ] — I, such that the induced map ¢! (I) — I is a bijection
[19, Df. 2.1.1.8], [1, Df. 8.1].

(1.2.3) A cartesian fibration

q: Xg — Og
will be said to exhibit Xy as an Og-monoidal co-category just in case the cocartesian
fibration
g7 (Xg)” — (Og)”
exhibits (Xg)% as an (Og)°?-monoidal co-category in the sense of [19, Df. 2.1.2.13].
When Oy = NA(F)?, we will say that g exhibits X, as a symmetric monoidal co-
category.

(1.2.4) A morphism f: Oy —> Py of co-anti-operads is a morphism over NA(F)? that
carries inert edges to inert edges. If Og and Py are symmetric monoidal co-categories,
then f is a symmetric monoidal functor if it carries all cartesian edges to cartesian
edges.

We do not know a standard name for this structure. In a previous verion of this paper, CB called these “coop-
erads,” but this conflicts with better-known terminology.
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1.3. Example. Suppose C an co-category. We define the cartesian co-anti-operad as
p: Co=((CM))? — NA(F)?,

where the notation (-)" refers to the cocartesian co-operad [19, Cnstr. 2.4.3.1]. If C is an co-
category that admits all products, then the functor p exhibits C, as a symmetric monoidal
oo-category [19, Rk. 2.4.3.4].

An object (I, X) of C, consists of a finite set I and a family {X; | i € I}; a morphism
(p,w): (I, X) —> (J,Y) of Cy consists of a map of finite sets ¢: ] —> I, and a family of
morphisms

{0 X0y —Y; [ e g7 D}
of C. If C admits finite products, then the morphisms w; determine and are determined by
a family of morphisms

{w,{:Xi—»HYj ‘ iel};
j€li
here J; denotes the fiber ¢! (i).
Observe that the cartesian co-anti-operad is significantly simpler to define than the carte-

sian co-operad. Note also that (A%, = NA(F)®.

It is extremely useful to note that the condition that an co-operad C® be a symmetric
monoidal co-category can be broken into two conditions:

(1) The first of these is corepresentability [19, Df. 6.2.4.3]; this is the condition that the
functors Mapég (x1,—): C —> Top be corepresentable, where &; is the unique active
map I —> * in A(F). A compact expression of this is simply to say (as Lurie does) that
the inner fibration C® —> NA(F) is locally cocartesian.

(2) The second condition is symmetric promonoidality. This can be expressed in a number
of ways. One may say that for any active map ¢: ] —> I of A(F), for any object x; € C7,
and for any object z € C, the natural map

yIECi® E ¢ EI
J Mapg's (y1, 2) X Mapge (x7, yr) — Mapgs (x5, 2)

is an equivalence; this is an operadic version of the condition expressed in [19, Ex.
6.2.4.9]. Equivalently, C® is a symmetric promonoidal co-category if it represents a
commutative algebra object in the co-category of co-categories and profunctors. In
light of [19, §B.3], we make the following definition.

1.4. Definition. We will say that an co-operad C® is symmetric promonoidal if the structure
map C® — NA(F) is a flat inner fibration [19, Df. B.3.8]. Similarly, we will say that an co-
anti-operad Cg is symmetric promonoidal if the structure map Cg —> NA(F) is a flat
inner fibration.

Our claim now is that the conjunction of these two conditions are equivalent to the
condition that C® be a symmetric monoidal co-category. That is, we claim that a symmetric
monoidal co-category is precisely a corepresentable symmetric promonoidal co-category.
This follows immediately from the following.

1.5. Proposition. The following are equivalent for an inner fibration p: X — S.

(1.5.1) The inner fibration p is flat and locally cocartesian.
(1.5.2) The inner fibration p is cocartesian.
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Proof. The second condition implies the first by [19, Ex. B.3.11]. Let us show that the first
condition implies the second. By [16, Pr. 2.4.2.8], it suffices to consider the case in which
S = A?, and to show that for any section of p given by a commutative triangle

Y
/N
X —> 2
h

in which f and g are locally p-cocartesian, the edge h is locally p-cocartesian as well.

In this case, by [16, Cor. 3.3.1.2], we can find a cocartesian fibration q: ¥ — A? along
with an equivalence

(/): XXAz A% —"’»YXAz A%

of cocartesian fibrations over A%. Now since p is flat, the inclusion X x,» A2 < X is a
categorical equivalence over A%. Consequently, we may lift to obtain a map y: X — Y over
A? extending ¢. This map is a categorical equivalence since both p and q are flat.

Now y(f) = ¢(f) and w(g) = ¢(g) are g-cocartesian, whence so is y(h). The stability of
relative colimits under categorical equivalences [16, Pr. 4.3.1.6], in light of [16, Ex. 4.3.1.4],
now implies that h is p-cocartesian. O

One reason to treasure symmetric promonoidal structures is the fact that, as we shall now
prove, they are precisely the structure needed on an co-category C in order for Fun(C, D)
to admit a Day convolution symmetric monoidal structure.”

To explain, suppose first C® a small symmetric monoidal co-category, and suppose D®
a symmetric monoidal co-category such that D admits all colimits, and the tensor product
preserves colimits separately in each variable. In [11], Glasman constructs a symmetric
monoidal structure on the functor co-category Fun(C, D) which is the natural co-categorical
generalization of Day’s convolution product. As in Day’s construction, the convolution F® G
of two functors F,G: C — D in Glasman’s symmetric monoidal structure is given by the
left Kan extension of the composite

F,G
cxc Y pxp-2.D

along the tensor product®: C x C — C.
In particular, for any finite set I, and for any I-tuple {F,};.; of functors C — D, the value
of the tensor product is given by the coend

u €C¥ §
(®F,->(x> :j Mapgls (7, x) ® (X) F(1;).
i€l i€l

Equivalently, the Day convolution on Fun(C, D) is the essentially unique symmetric mon-
oidal structure that enjoys the following criteria:

» The tensor product
—® —: Fun(C, D) x Fun(C, D) — Fun(C, D)

preserves colimits separately in each variable.
» The functor given by the composite

jxid m
C? x D —— Fun(C, Kan) x D — Fun(C, D)

2We would like to acknowledge that Dylan Wilson has independently made this observation.
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is symmetric monoidal, where j denotes the Yoneda embedding, and m is the func-
tor corresponding to the composition

Fun(C, Kan) — Fun(D x C, D x Kan) — Fun(D x C, D)

in which the first functor is the obvious one, and the functor D x Kan — D is the
tensor functor (X, K) ~> X ® K of [16, §4.4.4].
Conveniently, we can extend Glasman’s Day convolution to situations in which C® is only
symmetric promonoidal.

1.6. Proposition. For any symmetric promonoidal co-category C® and any symmetric mon-
oidal co-category D® such that D admits all colimits and ® : D x D —> D preserves colimits
separately in each variable, Fun(C, D) admits a symmetric monoidal structure such that the
E-algebras therein are morphisms of co-operads C® — D®.

Proof. The results of the first two sections of [11] hold when C® is symmetric promonoidal
with only one change: In the proof of [11, Lm. 2.3], the reference to [16, Pr. 3.3.1.3] should
be replaced with a reference to [19, Pr. B.3.14]. Consequently, our claim follows from [11,
Prs. 2.11 and 2.12]. O

1.7. Once again, for any finite set I, and for any I-tuple {F;},c; of functors C — D, the value
of the tensor product is given by the coend

u C¥ £
~ I
® F ) (x) = J Map e (17, x) ® ® F(u;).
i€l i€l
2. THE SYMMETRIC PROMONOIDAL STRUCTURE ON THE EFFECTIVE BURNSIDE 0O-CATEGORY

Suppose C a disjunctive co-category. The product on C does not induce the product
on the effective Burnside co-category A%(C). (Indeed, recall that the effective Burnside
00-category admits direct sums, and these direct sums are induced by the coproduct in C.)
However, a product on C (if it exists) does induce a symmetric monoidal structure on AD(C).
The construction of the previous example is just what we need to describe this structure, and
it will work for a broad class of disjunctive triples — which we call cartesian - as well.

It turns out to be convenient to consider situations in which C does not actually have
products. In this case, the effective Burnside co-category A%(C) admits not a symmetric
monoidal structure, but only a symmetric promonoidal structure, which suffices to get the
Day convolution on co-categories of Mackey functors.

2.1. Notation. Suppose (C,C;,C") a disjunctive triple. We now define a triple structure
(C> (C)s4s (C,)") on C, in the following manner. A morphism

(¢) w) : (I) X) - (]) Y)
of C,, will be ingressive just in case ¢ is a bijection, and each morphism
w;: Xg(j) —Y;
is ingressive. The morphism (¢, w) will be egressive just in case each morphism
wj: Xg(j) —Y;
is egressive (with no condition on ¢).

It is a trivial matter to verify the following.
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2.2. Lemma. Suppose (C,C;,C") a left complete disjunctive triple. Then the triple
(Cx’ (CX)T) (CX)T)
is adequate in the sense of [4, Df. 5.2].

In particular, for any left complete disjunctive triple (C, C;, C"), one may consider the
effective Burnside co-category

AT(Cy (C)r (CON):
2.3. Example. Note in particular that
(A%, ((A),0)4, ((A9),)T) = (NA(E)?, INAE)?, NA(E)?),
whence one proves easily that the inclusion
NA(E) = (47,01 — AT(A), (A7), (4,07
is an equivalence.

We'll use the following pair of results. They follow the same basic pattern as [4, Lms.

>«

11.4 and 11.5]; in particular, they too follow immediately from the first author’s “omnibus
theorem” [4, Th. 12.2].

2.4. Lemma. Suppose (C,C;,C") a left complete disjunctive triple. Then the natural functor
AT(C,, (Cps (COT) — AT((A%),, ((A%),0)4, (A),)T)
is an inner fibration.

2.5. Lemma. Suppose (C,C;,C") a left complete disjunctive triple. Then for any object Y of
C, lying over an object ] € (A%), and any inert morphism ¢: I —> J of NA(F), there exists a
cocartesian edge Y — X for the inner fibration

Aeﬁ(cx’ (CX)T) (CX)T) - Aeﬁ((AO)x’ ((AO)X)T> ((AO)X)T)
lying over the image of ¢ under the equivalence of Ex. 2.3.

Now we can go about defining the symmetric promonoidal structure on the effective
Burnside co-category of a disjunctive triple.

2.6. Notation. For any disjunctive triple (C, C;,C"), we define AT(C, C;,C")® as the pull-
back

AT(C,Cp, CN)® = AT(Co (C)1 (CT) Xt (4000, ((a0,01) NA),
equipped with its canonical projection to NA(F). Note that because the inclusion
NA(E) > AT(40),, (A%, (4%)])
is an equivalence, it follows that the projection functor
A(C,C, N — AT(C,, (C)4, (CT)
is actually an equivalence.

2.7. Remark. Suppose (C,C,,C") a disjunctive triple. The objects of the total co-category
A(C, C,, C1)® are pairs (I, X;) consisting of a finite set I and an I-tuple X; = (X;);¢; of
objects of C. A morphism

(]sY]) - (I>XI)
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of AY(C,C;,C")® can be thought of as a morphism ¢: ] —> I of A(F) and a collection of
diagrams

Usi) o
AN jee™ D
Y X
such that for any j € J, the morphism Uy ;) = Xy ;) is ingressive, and the morphism
Us(j) — Y]

is egressive.
Composition is then defined by pullback; that is, a 2-simplex

(K> ZK) - (]) Y]) - (I) XI)
consists of morphisms v : K— Jand ¢: ] —> I of A(F) along with a collection of diagrams

Wy k)

ke (¢y)" (D)

Y

) V.,

/ (k) Upty (k)

Zy Yy X(y(k)

in which the square in the middle exhibits each W; (for i € I) as the iterated fiber product
over Uj; of the set of objects {V; xy, U; | j € J;}. (Note that the left completeness is used to

show that this iterated fiber product exists.)
In particular, A%(C, Cs» CT)?I} may be identified with the effective Burnside co-category

A (C, CT,CT) itself, and for any finite set I, the inert morphisms y;: I — {i}, together
induce an equivalence

AT(C,C,,Chp = [ [A9(C,C;,CNHE,.

iel
For the proofs of the next few results it is convenient to introduce a bit of notation.

2.8. Notation. Suppose (C,C,,C") a triple, suppose A and B are two sets, and suppose
S: AU B— C afunctor. Then let

!
/48, 5 S, beenyes S ClS  eenun

denote the full subcategory spanned by those objects such that the morphisms to the objects
S, are egressive and the morphisms to the objects §,, are ingressive. In particular, note that

Map ¢ ¢, crye (U Y)), (%, X)) = ‘C/’{Y,- 5 Xjer
We have almost proven the following.
2.9. Proposition. For any left complete disjunctive triple (C,C,,C"), the inner fibration
AT(C,Cy,CT® — NA(F)

is an co-operad.
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Proof. Following Rk. 2.7, it only remains to show that given an edge a: I — J in NA(F)
and objects (I, X), (J,Y) in A (C, Cs, C™®, the cocartesian edges

(*)Y)

7N\

(]) Y) ( *, Y):
over the inert edges p/: ] — * induce an equivalence
o
Mapiqﬁ(C’CT)CT)® ((I) X)» (]) Y)) I H Mapieﬁ‘(xc)c_r’c'r)ea ((I» X)) (*) Y))

jel
But this is indeed true, since the map identifies the left-hand side as

!
[1<hx, Vhewt” O
jel

We now show that the co-operad A%(C, C;,C")® is symmetric promonoidal.
2.10. Proposition. Suppose (C,C;,C") a left complete disjunctive triple. Then the co-operad
p: AT(C,C,,C")® — NA(F)
is symmetric promonoidal; that is, p is a flat inner fibration.

Proof. Suppose o: A* — NA(F) a 2-simplex given by a diagram

Yy

I

a 2-simplex of NA(F). Suppose

(K, W)

IR

(I, X) (K, Z),

an edge y of
2= AT(C,Cp, CM® X a0 A2
lifting y. Set
E= 25 1.2 *na) U
be the co-category of factorizations of y through X;. Observe that an n-simplex of E is a
cartesian functor O (A™2)? 5 (C,, (C)y> (CHh satisfying certain conditions.

We aim to show that E is weakly contractible. To this end, we will identify a full subcate-
gory E' ¢ E whose inclusion functor admits a right adjoint such that E’ contains a terminal
object.

To begin, let us define a functor €: E x A! — E extending the projection E x {1} —=> E
as follows: given non-negative integers k < n, let f, ;. : O(A"") — O(A™?) be the unique
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functor which on objects is given by

0j ifi<k+landj<k+1;
Sfux(@j) =10 - 1) ifi<k+landj>k+1;
(-1)(G-1) ifi>k+1.

Then for every n-simplex 0 : A” —> E corresponding to a functor
7: O()r —C,,

define €(0) : A" x A' — E to be the unique functor which sends the nondegenerate (n + 1)-
simplex

to the (1 + 1)-simplex A" — E corresponding to the functor
Go fF: O(A™)P —C,.

It is easy (albeit tedious) to verify that the functors (o) assemble to yield a unique functor
€. Now set
R = €l (gx(op-

Given an object T € E displayed as a 2-simplex

(K, W)
VN
(J, Yor) (K, Yy5)
NN
(I, X) (J,Y) (K, 2)
of X, the edge e, : R(t) —> T to be
(K, W)
RN
(J, Yor) (K, W)
YA WA
U, Yo1) (J,Yo1) (K, Y15)
SN SN SN
I, X) (J. Yor) (J,Y) (K, Z)

From this, it is apparent that the essential image E’ of R is the full subcategory spanned by
those 7 € E such that the morphism (J,Yy;) —> (J, Y) is an equivalence, and by the dual of
[16, Pr. 5.2.7.4], R is a colocalization functor.

We now define (J, W) € C, by

W AWei HBG) # =
! ) if B(j) = *.



SPECTRAL MACKEY FUNCTORS AND EQUIVARIANT ALGEBRAIC K-THEORY (II) 13

There is an obvious factorization of (K, W) — (I, X) through (J,W), and we define an
objectw € E' as

(K, W)
N
(W) (K, W)
SN N
(1, X) (J, W) (K, 2)

We now claim that w is terminal in E’. Let T € E’ be any object displayed as a 2-simplex

(K, W)
7N\
(J, Yor) (K, Yp,)
SN SN
(1, X) (J,Y) (K, Z2)

of 2. We have a homotopy pullback square

Map, (1, w) —> Mapzu,x)/ (dy (1), dy(w))

| |

AO MapZ(I,X)/ (d2 (T), 7)

T

and the terms on the right-hand side are in turn given as homotopy pullbacks
Mapy  (d;(7),d;(w)) — Mapy((J,Y),(J,W))
dy (1)

AO

i Maps (1 X), (W),

and
Mapz(lyx)/ (dz(T)> )7) - Mapz((]r Y)> (K> Z))

dy(1)*

AO

Mapz((l, X)’ (K> Z))

In light of the equivalence (J,Y,;) = (J,Y), we obtain equivalences

Map (), 0, W) = [ TeClyy
j€J
A7) ~ !
Map (1, X), (1, W) = [ 1Cjy. ey’
JE] i€a

Under these equivalences the map d,(7)* is given by ]_[j o $; where

. ! —_ . —> ! w
% 1y s W) T O W
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is defined by postcomposition by the maps (Y, )j — X, (withi € a™}( 7)). As a corollary of
Cor. 2.11.1 below, we may factor the square in question into two homotopy pullback squares:

Mapz(m/ (dy (7). dy (@) — Map(Cx)fd((]’ W), (7> Y1) Hjel lc;l(Y01)j s W

AO

Map e, ; (W), (1,X)) —— Tlie; Clix, s,

iea”1(j) ’

Similarly, we factor the second square into two homotopy pullback squares:

Mapz(j,x)/ (dz (T)a )7) — Map(cx)g((K; W)) (]) YOI)) —> erK IC/,{(Ym)j ; Zk}j

epL(k)

AO

Map(cx);((K, W), (1, X)) —— Tlex lc/’{X.' s Zi}

iey~1(k)

The map w, is then seen to be equivalent to the induced map between the fibers of the
horizontal maps in the following commutative square:

Map(cx)i’”d((]a W)s (I) YOl)) - Map(cx)z ((]s W)a (17 X))

l

Map(cx)g((K’ W)) (]a YOI)) - Map(cx)}fl((Ki W)’ (I) X))

The left vertical map is the equivalence
H Mach (Wﬁ(j)> (Yo )]) - H H Mapcw‘ Wy, (Yo, )j)s
jeBHK) keK jep1(k)
and the right vertical map is the equivalence
[T Mape: Wy X)) =] [] Mape: (Wi, X)),
jeBHK) ieat(j) keK iey=i(k)

so the square is in fact a homotopy pullback square and w, is an equivalence. Hence the
mapping space Map (7, w) is contractible and w is a terminal object of E’. This proves that
E is weakly contractible. O

We digress briefly to give the following proposition, which is useful for studying the
interaction of the over and undercategory functors with homotopy colimit diagrams.

2.11. Proposition. Suppose C an co-category, and let sSet;c be endowed with the model
structure created by the forgetful functor to sSet equipped with the Joyal model structure. Then
we have a Quillen adjunction

C(,)/ : sSet/C pa— (sSet/C)"P C/(,)
between the over and undercategory functors.

Proof. The displayed functors are indeed adjoint to each other, since for objects ¢: X — C
and y: Y —> C we have natural isomorphisms

HOm/C(X, CV//) = HOm(Xuy)/(X * Y, C) = HOm/C(Y, C/¢)

To check that this adjunction is a Quillen adjunction, we check that C_), preserves cofibra-
tions and trivial cofibrations. Let 7: ¢ —> ¢’ beamapin sSet ¢, andlet f = d,(7): X — X'.
If f is a monomorphism, by [16, 2.1.2.1] we have that Cyr; —> Cy, is a left fibration, hence
by [16, 2.4.6.5] a categorical fibration. If f isa monomorphism and a categorical equivalence,
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by [16, 4.1.1.9] and [16, 4.1.1.1(4)] f is right anodyne, hence by [16, 2.1.2.5] Cyr)—> Cy is
a trivial Kan fibration. (]

2.11.1. Corollary. Let C be an co-category and suppose given a morphism f : x — y in C
and a diagram

Kt 1" .¢

|, 17

KuaA® <~ rpuA°

of simplicial sets where ¢' = ¢ U id and p'|,0 selects y. Then we have a homotopy pullback
square of co-categories

F
{x} Xc C/p —_—> C/P/

L

{X} Xc C/P°¢ — C/Pl°¢r

where the vertical functors are given by change of diagram and the horizontal functors are to
be defined.

Proof. Define the functor F as follows: the datum of an n-simplex A" — {x} x C,,, consists
of amap a: A" x L — C which restricts to p on L and to the constant map to x on A", and
we use this to define A” x (L U A%) — C to be the unique map which restricts to  on A" x L
and to

A x A — AL

on A" x A’ this gives the n-simplex of C, - The definition of G is analogous. The square in
question then fits into a rectangle

F
{X} Xc C/p C/pl C/p

l L

G
xXh%c Crpep = Crprepr = Cppeg

where the long horizontal functors are given as the inclusion of the fiber over x and the
functors in the righthand square are given by change of diagram. By Prp. 2.11 and left
properness of the Joyal model structure, the righthand square is a homotopy pullback square.
The vertical functor C;, —> C; 4 is a right fibration, so the outermost square is a homotopy
pullback square. The conclusion follows. O

If we want the symmetric promonoidal co-category
AF(C,C;, CH® — NA(F)
to be symmetric monoidal, we need a nontrivial condition on our disjunctive triple.

2.12. Definition. A disjunctive triple (C, C;,C") will be said to be cartesian just in case it
enjoys the following properties

(2.12.1) Itisleft complete.
(2.12.2) The underlying co-category C admits finite products.
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(2.12.3) For any object X € C, the product functor
Xx-:C—C

preserves finite coproducts; that is, for any finite set I and any collection {U; | i € I}
of objects of C, the natural map

]_[(Xin)HXx(]_[Ui)

iel iel
is an equivalence.
(2.12.4) Amorphism X — HJ. <7 Y] is egressive just in case each of the components X —Y;
is so.

2.13. Example. Note that a disjunctive co-category C that admits a teminal object, when
equipped with the maximal triple structure (in which every morphism is both ingressive
and egressive) is always cartesian. More generally, any disjunctive triple that contains a
terminal object 1 with the property that every morphism X — 1 is ingressive and egressive
is cartesian.

2.14. Proposition. If (C,C;,C") is a cartesian disjunctive triple, then the symmetric promon-
oidal co-category

p: AD(C,C;,C"® — NA(F)
is symmetric monoidal; that is, p is a cocartesian fibration.

Proof. Since p is flat, by Pr. 1.5 it suffices to verify that p is a locally cocartesian fibration.
Since p is an co-operad, by the dual of [16, Lm. 2.4.2.7] we reduce to checking that for any
active edge o: I — J and any object (I, X) over I, there exists a locally p-cocartesian edge

& covering a. For each j € J, let X; = [];,1(j) Xi» and define & to be

J.X)

N

I, X) (7, X),

where the morphism (J, X) — (I, X) is defined using the projection maps X,; —> X;.
Then & is a locally p-cocartesian edge if for all (J,Y) € AY(C,C;,C' )7, the induced map

&* . MapA“ﬁ(C,CT,CT)?((]’ Y)a (]) Y)) —> MapAEﬁ(C,Cf,C*)f ((I) X)) (]a Y))

is an equivalence. This map is in turn equivalent to the map
¢;: 1IC! —T1Clhy v
g ! g /{H!‘ﬂx'l(i) Xis Y]} g X5 Yikieam1())

where ¢; is induced by postcomposition by the projection maps [ | X; — X;. Since

ica”1(j)
(C,C;, C") is a cartesian disjunctive triple, we have that the functor

(CT)/ Hiax
is an equivalence. Hence in light of Prp. 2.11 we have a homotopy pullback square

¢ ,
X5 v} [jes Ciix, v}

+
X T (€ xieat(j)

'
HJE] lC/ iea™1(j)

{Hfal(j)

i i
€/ Megry X €)1y



SPECTRAL MACKEY FUNCTORS AND EQUIVARIANT ALGEBRAIC K-THEORY (II) 17

where the horizontal maps are equivalences. We deduce that the map &* is an equivalence,
as desired. O

In light of Lm. 2.5 and Rk. 2.7, we obtain the following.
2.15. Theorem. Suppose (C,Cy,C") a left complete disjunctive triple. Then the functor
AT(C,C,,C® — NA(F)

exhibits AT(C, C,,C")® as a symmetric promonoidal co-category, the underlying co-category
of which is the effective Burnside co-category AY(C,C,,C"). Furthermore, if (C,C;,C") is
cartesian, then AY(C, Cs, C"® is symmetric monoidal.

2.16. Notation. When (C,C;,C") is a right complete disjunctive triple, we may employ
duality and write

AF(C,C,,Chg = (AF(C,CT,Cp)®)P.
The functor AT(C, C;,C Mg —> NA(F)? is then a symmetric promonoidal structure on the
Burnside co-category Ad(c,ct, Cy)? = A (C, Cs, ch.

2.17. Suppose (C,C,,C") a cartesian disjunctive triple. Note that the formula

H(XxU»:Xx(L[U,»)

i€l i€l
implies immediately that the tensor product functor
®: AT(C,Cy,Ch x AF(C,C,,C) — AT (C,C,,CT)

preserves direct sums separately in each variable.

More generally, suppose (C, C;,C") a left complete disjunctive triple, suppose I a finite
set, and suppose {x;};c; a collection of objects of C, which we view, by the standard abuse,
as an object of A7(C,C,,C")?. Consider the 1-simplex &, : A! — NA(F), and denote by
hl¥ikier the restriction of the functor

Aeﬁ(c, C-‘-, CT)® XNA(F) Al — Kan

corepresented by {x;},c; to AT(C, C;,C"). Informally, this is the functor Mapé% UxiYier> -)-
Suppose j € I, and suppose {y, —> xj}icx a family of morphisms that together exhibit x;
as the coproduct [ [, k. For eachi € I'and k € K, write

Gt
x;  ifi# ]

Then the natural map

h{xi}iel — H h{xi’,k}iel
keK
is an equivalence.

2.18. For any disjunctive co-category C that admits a terminal object, the duality functor
D: AF(C)? = AF(C)

of [4, Nt. 3.10] provides duals for the symmetric monoidal co-category AD(C)® [17, DL.
2.3.5]. More precisely, for any object X of A%(C), there exists an evaluation morphism
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X ® DX —> 1 given by the diagram

2N

XxX 1,

and, dually, there exists a coevaluation morphism 1 — DX ® X given by the diagram

1‘/XwA

X x X.

Since the square

X XxX
XxX oy XxXxX
is a pullback, it follows that the composite
X—XeoDX®X —X

in A7(C) is homotopic to the identity. We conclude that AF(C)®isa symmetric monoidal
00o-category with duals.

2.19. If(C,C,,C") is a cartesian disjunctive triple, then in general it is not quite the case that
the symmetric monoidal co-category A%(C, C;, C")® admits duals. We have an evaluation
morphism X ® DX — 1 in A%7(C, C;,C") just in case the diagonal A: X — X x X of C
is egressive, and the morphism ! : X — 1 is ingressive. We have a coevaluation morphism
1— DX ® X in A7(C, C;,C") justin case A is ingressive and ! is egressive.

2.20. If (C,C;,C") and (D, D;, DY) are left complete disjunctive triples, then it is easy to see
that a functor of disjunctive triples
f:(C,C,,C") — (D, D;,D")
induces a functor of adequate triples
(Cx (C15 (CT) —> (Dy, (D), (D))
and thus a morphism of co-operads
AT(f)®: AT(C,C,,CT)® — AD(D, Dy, DY)®.
If, furthermore, (C, CT,CT) and (D, DT,DT) are cartesian and f preserves finite products,
then A%( f)® is of course a symmetric monoidal functor.

3. GREEN FUNCTORS

Andreas Dress [10] defined Green functors as Mackey functors equipped with certain
pairings. Gaunce Lewis [14] noticed that these pairings made them commutative monoids
for the Day convolution tensor product on the category of Mackey functors. By an old
observation of Brian Day [9, Ex. 3.2.2], these are precisely the lax symmetric monoidal
additive functors on the effective Burnside category. Thanks to recent work of Saul Glasman
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[11], this characterization of monoids for the Day convolution holds in the co-categorical
context as well.

3.1. Definition. We shall say that a symmetric monoidal co-category E® is additive if the un-
derlying co-category E is additive, and the tensor product functor ®:: E x E —> E preserves
direct sums separately in each variable.

3.2. Definition. (3.2.1) Suppose (C, CT,CT) a left complete disjunctive triple and E® an
additive symmetric monoidal co-category. Then a commutative Green functor is a
morphism of co-operads

Af(C,C,,CT® — E®
such that the underlying functor A7(C, C;,C") — E preserves direct sums.
(3.2.2) More generally, if O® is an co-operad, then an O®-Green functor is a morphism of
0o-operads
AF(C,Cy, CM® xyp) OF —> E® xyyp () O°
over O® such that for any object X of the underlying co-category O, the functor
AT(C,C;, CT) = (AT(C, C;, CT® Xy O®)x —> (E® xypm O®)x = E

preserves direct sums.
(3.2.3) Similarly, for any perfect operator category @, we may define a @-Green functor as
a morphism

AT(C, Cy, CM)® xyp ) NAD) —> E® x5 NA(D)

of co-operads over @ such that the underlying functor A%(C, C;,C")— E preserves
direct sums.

3.3. Notation. Suppose (C,C;,C") a left complete disjunctive triple, and suppose E® an
additive symmetric monoidal co-category. For any co-operad O%, let us write, employing
the notation of [19, Df. 2.1.3.1]

T,
Green: (C,C;,C"; E®) c Alg AT(C,Cp Coxrue)O° O (E® xnacE O%)
for the full subcategory spanned by the O®-Green functors.

3.4. Example. We define modules over an associative Green functor in this way. Suppose
(C,Cy,C") aleft complete disjunctive triple, and suppose E® an additive symmetric monoid-
al co-category. Then we may consider the co-operad of [19, Df. 4.2.7], which we will denote
LM®. The inclusion Ass® < LM® induces a functor

Green, .« (C, Cy,C"; E®) — Green ¢ (C,C;,CT; E®).

An object A of the target may be called an associative Green functor, and an object of the
fiber of this functor over A may be called a left A-module. We write

Mod}(C,Cy, CT; E®) = Greenyyps (C, Cy, C5 E®) Xgreen, o (c.CycHiE®) (A}

for the co-category of left A-modules. When A is a commutative Green functor, we will drop
the superscript €.

The convolution of two Mackey functors will not in general be a Mackey functor, but it
can replaced with one by employing a localization (which we might as well call Mackeyifica-
tion). To prove that convolution followed by Mackeyification defines a symmetric monoidal
structure on the co-category of Mackey functors, it is necessary to show that Mackeyification
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is compatible with the convolution symmetric monoidal structure in the sense of Lurie [19,
Df. 2.2.1.6, Ex. 2.2.1.7].
The following is immediate from [4, Pr. 6.5].

3.5. Lemma. Suppose (C,C;,C") a disjunctive triple, and suppose E a presentable additive
co-category. Then the co-category Mack(C, Cy, C'; E) is an accessible localization of the co-
category Fun(AY(C, Cs, Ch,E).

3.6. Notation. Suppose (C,C;,C") a disjunctive co-category, and suppose E a presentable
additive co-category. Then write M for the left adjoint to the fully faithful inclusion

Mack(C, Cy, C'; E) — Fun(A¥(C, C,,C"), E).

3.7. Lemma. Suppose (C,C;,C") a left complete disjunctive co-category, and suppose E® a
presentable symmetric monoidal additive co-category. Then the left adjoint M constructed
above is compatible in the sense of [19, Df. 2.2.1.6] with Glasman’s Day convolution symmetric
monoidal structure on Fun(AY(C, C;, Cch,E).

Proof. For any collection of objects {s; | i € I} of C, let
ntit: A9(C,C,,C") — Kan
be as in 2.17, and for any object x € E, let
- ®x: Fun(A%(C, C;,C"), Kan) — Fun(A7(C,C,,C"), E)

be the composition with the tensor product — ® x: Kan — E with spaces [16, $4.]. Thus
objects of the form ht @ x generate the co-category Fun(AY(C, Cs» C"), E) under colimits.
It is easy to see that for any functors f, g: AY(C,C;,C") — Kan and any object x € E, the
map

(fxgex—(fox)®(g®x)
is an M-equivalence; furthermore, the class of M-equivalences is the strongly saturated class
generated by the canonical morphisms
W'ex— (KFex)e (h' ®x).
This tensor product and the Day convolution are compatible in the sense that there are
natural equivalences
ox)eh ey =he(xey),
whence one obtains natural M-equivalences
(FPex)o(Wex)eh'ey) = (HWex)eh'sy)e(hex) e h'®y))
~ (WMexey)eh™ exey)
— (W xhthexey
=~ WM exey
= h¥%exeh'®y.

It follows that for any M-equivalence X — Y and any object Z € Fun(A%(C, C;,C"), E),
the morphism

X®7Z—>Y®Z

is an M-equivalence. O
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3.8. In particular, if (C, C;, C") is a left complete disjunctive triple, and if E® a presentable
symmetric monoidal additive co-category, we obtain a symmetric monoidal co-category
Mack(C, C;,C'"; E)®, and, in light of [11], for any co-operad O®, one obtains an equivalence

Alg . (Mack(C,C;,C'; E)®) = Greenps (C, C;, CT; E).

4. GREEN STABILIZATION

Now let us address the issue of multiplicative structures on the Mackey stabilization, as
constructed in [4, §7]. In particular, we aim to show that if E is an co-topos, then the Mackey
stabilization of a morphism of operads

A7(C,C,,CH® — E*
naturally admits the structure of a Green functor
AF(C,C,,CH® — Sp(E)".

4.1. Definition. Suppose (C,C;, CT") a cartesian disjunctive triple, suppose E an co-topos,
and suppose

f: A7, C;,CNH° — E* and F: A¥(C,C,;,CH® — Sp(E)®
morphisms of co-operads. Then a morphism of A%(C, C;,C")®-algebras

n: f—Q®eF

will be said to exhibit F as the Green stabilization of f if F is a Green functor, and if, for any
Green functor R: AY(C, C;,C"® —> Sp(E)®, the map

MapGreenEoo(C,CT,C*;Sp(E)Q?) (F, R) — Map,,, .ty E) (f,Q%R)
induced by 7 is an equivalence.

The following result is essentially the same as [2, Pr. 2.1].

4.2. Proposition. Suppose (C,C,,C") a cartesian disjunctive triple. There exists a symmetric
monoidal co-category DA(C, C;,C")® and a fully faithful symmetric monoidal functor

j®: A¥(C,C,,CH® < DA(C,C,,CH®
with the following properties.
(4.2.1) The co-category DA(C, C,, CT) underlies DA(C, C.., C")®, and the underlying functor
gory T T ying
of j® is the inclusion
j: A7(C,C,,CT) — DA(C, C,, CY)

of [4, Nt. 7.2].

(4.2.2) For any symmetric monoidal co-category E® whose underlying co-category admits all
sifted colimits such that the tensor product preserves sifted colimits separately in each
variable, the induced functor

AlgDA(C,CT Cche (E®) — Alz“:',e\eﬂ‘(c,cT Cche (E®)

exhibits an equivalence from the full subcategory spanned by those morphisms of co-
operads A whose underlying functor A: DA(C,C,,C") —> E preserves sifted colimits
to the full subcategory spanned by those morphisms of co-operads B whose underlying
functor B: AT(C, C;,C") —> E preserves filtered colimits.



22 CLARK BARWICK, SAUL GLASMAN, AND JAY SHAH

(4.2.3) The tensor product functor
®: DA(C,C,,C") x DA(C,C;,C") — DA(C, C;,C")
preserves all colimits separately in each variable.

Proof. The only part that is not a consequence of [19, Pr. 4.8.1.10 and Var. 4.8.1.11] is the
assertion that the tensor product functor

®: DA(C,C;,C") x DA(C,C;,C") —> DA(C, C;, CT)

preserves direct sums separately in each variable. This assertion holds for objects of the ef-
fective Burnside category A%(C, C;,C") thanks to the universality of coproducts in C; the
general case follows by exhibiting any object of DA(C, C;, C") as a colimit of a sifted diagram
of objects of A% (C, C;,C") and using the fact that both the tensor product and the direct
sum commute with sifted colimits. O

In light of [2, Pr. 3.5] and [19, Pr. 6.2.4.14 and Th. 6.2.6.2], we now have the following.
4.3. Proposition. Suppose (C,C;,C") a disjunctive triple, suppose E an co-topos, and suppose
f: A7, C,,CH® — EX
a morphism of co-operads. Then a Green stabilization of f exists. In particular, the functor

Q% o —: Green(C,C;, C"; Sp(E)®) —> Alg .. orye (E”)
admits a left adjoint that covers the left adjoint of the functor
Q% o —: Mack(C, C;, C'; Sp(E)) — Fun(A%(C, C;,C"), E).
4.4. Example. Suppose (C,C;, C') a cartesian disjunctive triple. Then the functor
AT(C,Cy,C") — Kan

corepresented by the terminal object 1 of C is the unit for the Day convolution symmetric
monoidal structure of Glasman, and hence it is an E_, algebra in an essentially unique
fashion. Thus we can consider its Green stabilization
® _ Q® . T\® N
8% =S¢, ot AT(C.C.CN° — sph,
whose underlying Mackey functor is the Burnside Mackey functor Sc ¢, cry of [4]. We call
S® the Burnside Green functor.

In a similar vein, we immediately have the following:

4.5. Proposition. For any cartesian disjunctive triple (C,C,,C"), the functor
AT(C, Cy,CT)P — Mack(C, C;,C'; Sp)

given by the assignment X ~ SX is naturally symmetric monoidal. That is, for any two
objects X,Y € C, one has a canonical equivalence

X @§Y ~ gXX¥
4.5.1. Corollary. Suppose (C,C;,C") a cartesian disjunctive triple. For any spectral Mackey
functor M thereon, write F(M, —) for the right adjoint to the functor
- ® M : Mack(C,C;,C"; Sp) — Mack(C, C;,C"; Sp).
Then for any object X € C, the Mackey functor F(SX, M) is given by the assignment
Y v M(X XY).
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The following is now immediate.

4.6. Proposition. Suppose (C,C,,C") a cartesian disjunctive triple. The Burnside Mackey
Junctor Sc.c, cry is the unit in the symmetric monoidal co-category Mack(C, C;,C';Sp)®.
Consequently, the Burnside Green functor S?C,CT,CT) is the initial object in the co-category
Greeny ) (C, C;,C"; Sp®), and the forgetful functor

Modg: (C, C;,CT; Sp®) —=> Mack(C, C,,C"; Sp)

is an equivalence.

5. DuALITY

In this section, suppose C a disjunctive co-category that admits a terminal object. Since
the functor X ~~> $ is symmetric monoidal, it follows immediately that every representable
Mackey functor $¥ is strongly dualizable, and

(SX )V ~ SDX

5.1. Notation. For any associative spectral Green functor R and for any object X € C, denote
by R¥ the left R-module R ® $¥, and denote by *R the right R-module $* ® R.
Of course for any left (respectively, right) R-module M, one has

Map(RX, M) = Q®°M(X) (resp., Map(*R, M) = Q®M(X) ).

5.2. Definition. For any associative spectral Green functor R on C, denote by Perf} the
smallest stable subcategory of the co-category Mod that contains the left R-modules R*
(for X e C) and is closed under retracts. Similarly, denote by Perf} the smallest stable
subcategory of the co-category Mody, that contains the right R-modules *R (for X € C) and
is closed under retracts.

The objects of Perf$ (respectively, Perfy) will be called perfect left (resp., right) modules
over R.

Now we obtain the following, which is a straightforward analogue of [19, Pr. 7.2.5.2].

5.3. Proposition. For any associative spectral Green functor R, a left R-module is compact
just in case it is perfect.

Proof. Forany X € C, the functor corepresented by R is the assignment M ~» Q% M(X),
which preserves filtered colimits. Hence RX is compact, and thus any perfect left R-module
is compact.

Conversely, there is a fully faithful, colimit-preserving functor F: Ind(Perf}) < Mody
induced by the inclusion Perf% —— Mod. If this is not essentially surjective, there exists a
nonzero left R-module M such that for every R-module N in the essential image of F, the
group [N, M] vanishes. In particular, for any integer n and any object X € C,

m,M(X) = [R*[n], M] = 0,
whence M = 0. O
The proof of the following is word-for-word identical to that of [19, Pr. 7.2.5.4].

5.4. Proposition. For any associative spectral Green functor R on C, a left R-module M is
perfect just in case there exists a right R-module MY that is dual to M in the sense that the
functor

Map(S, MV ® -): Mod% —> Kan
is the functor that M corepresents.
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5.5. Example. Note that, in particular, for any object X € C, one has
( RX )V ~ DX R.

6. THE KUNNETH SPECTRAL SEQUENCE

Let us note that the Kiinneth spectral sequence works in the Mackey functor context
more or less exactly as in the ordinary co-category of spectra. To this end, let us first discuss
t-structures on co-categories of spectral Mackey functors.

6.1. Proposition. Suppose (C,C,,C") a disjunctive triple, and suppose A a stable co-category
equipped with a t-structure (A, Ay). Then the two subcategories

Mack(C, C;,C'; A), = Mack(C,C;,C'; A,)

and
Mack(C, C;,C'; A)y = Mack(C,C,,C"; A_)
define a t-structure on Mack(C, C;, Ct; A).

Proof. Consider the functor L: Mack(C,C;, Ct; A) — Mack(C, Cs» Cct; A) given by com-
position with 7__; it is clear that L is a localization functor. Furthermore, the essential image
of L is the co-category Mack(C, C, C™; A__,), which is closed under extensions, since A__,
is. Now we apply [19, Pr. 1.2.1.16]. O

6.2. Note that if A a stable co-category equipped with a t-structure (A, A), then for any
disjunctive triple (C, C;, C"), the heart of the induced ¢-structure on Mack(C, Cs, ChA)is
given by

Mack(C, C;,C"; A)¥ = Mack(C,C,,C"; A”).

Furthermore, it is clear that many properties of the t-structure on A are inherited by the
induced ¢-structure Mack(C, C,, C'; A): in particular, one verifies easily that the t-structure
on Mack(C, C;, C'; A) is left bounded, right bounded, left complete, right complete, compat-
ible with sequential colimits, compatible with filtered colimits, or accessible if the ¢-structure
on A is so.

6.3. Example. For any disjunctive triple (C,C;, C"), the co-category Mack(C, C;,C';Sp)
admits an accessible ¢-structure that is both left and right complete whose heart is the abelian
category Mack(C, C;, CT; NAb). Observe that the corepresentable functors TSOSX are pro-
jective objects in the heart, and thus the heart has enough projectives.

In particular, if G is a profinite group and if C is the disjunctive co-category of finite
G-sets, then the co-category Mackg; of spectral Mackey functors for G admits an accessible
t-structure that is both left and right complete, in which the heart Mackg, is the nerve of the
usual abelian category of Mackey functors for G.

6.4. Construction. Suppose A a stable co-category equipped with a ¢-structure. Suppose
(C,C;,C") a disjunctive triple, and suppose X : NZ — Mack(C, C,,C"; A) a filtered Mack-
ey functor with colimit X(+00). Then we have the spectral sequence

associated with X [19, Df. 1.2.2.9].

Note that this is a spectral sequence of A¥-valued Mackey functors. Since limits and
colimits of Mackey functors are defined objectwise, it follows that for any object U €
AT(C, Cs» C"), the value EP4(U) is the spectral sequence (in A¥) associated with the fil-
tered object X(U): NZ — A.
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6.5. In the setting of Cnstr. 6.4, assume that A admits all sequential colimits and that the
t-structure is compatible with these colimits. If X(n) = 0 for n <« 0, then the associated
spectral sequence converges to a filtration on 7, ,(X(+00)) [19, 1.2.2.14]. That is:

» Forany p and g, there exists r 3> 0 such that the differential d, : EP'7 — EF™"17"
vanishes.
» For any p and g, there exist a discrete, exhaustive filtration
~ CFply C Fpry CFppp C oo C 71,y X(+00)
and an isomorphism E&! = Ff,,/Fbry.

In more general circumstances, one can obtain a kind of “local convergence” Suppose
again that A admits all sequential colimits, and that the ¢-structure is compatible with these
colimits. Now suppose that for every object U € A%(C,C;,C"), there exists n < 0 such
that X(n)(U) = 0. Then for every object U € AT(C, Cs» C™), the spectral sequence EPU)
converges to 71,,, . (X(+00)(U)). In finitary cases (e.g., when C is the disjunctive co-category
of finite G-sets for a finite group G), there is no difference between the local convergence
and the global convergence.

Better convergence results can be obtained when the filtered Mackey functor is the skeletal
filtration of a simplicial connective object Y, [19, Pr. 1.2.4.5]. In this case, we do not need
to assume that the ¢-structure on A is compatible with sequential colimits, the associated
spectral sequence is a first-quadrant spectral sequence, and it converges to a length p + g

filtration on TpiglVel-

Now, to construct the Kiinneth spectral sequence for Mackey functors, we can follow very
closely the arguments of Lurie [19, §7.2.1].

6.6. Lemma. Suppose (C,C;,C") a disjunctive triple. Then the collection of corepresentable
Mackey functors {SX | X e AY(C,C,,C")} is a set of compact projective generators for
Mack(C, C;, Ct; Sp.,) in the sense of [16, Dfn. 5.5.2.3].

Proof. The corepresentable functors provide a set of compact projective generators for the co-
category Fun™ Af(c, Cs, C"), Kan) because this category is precisely PZ(ABﬁ (C,C;, chyo.
The functor

Q% o —: Mack(C,C;,C";Sp, ) — Fun*(A%(C, C,,C"), Kan)

preserves sifted colimits and is conservative, since Q° : Sp_ , — Kan preserves sifted col-
imits by [19, 1.4.3.9] and is conservative, and the inclusion of both sides into all functors
preserves sifted colimits (we use that Kan is cartesian closed). We conclude by applying [19,
4.7.4.18]. [l

To set up the spectral sequence we need to impose the hypotheses of strong dualizability
on the SX. Because of this, we now work in the generality of C a disjunctive co-category
which admits a terminal object.

Suppose

R: AT(C)® xya ) Ass® —> SP” Xy Ass®

an associative Green functor, suppose M a right R-module, and suppose N a left R-module.
There is a comparison map

Torg*R(n*M, n,N)— 1, (M ®z N)
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constructed as follows: given x € m,, M(U) and y € m,N(V), choose representatives
>™(UR) —> M and Z"(RV) —> N and take their smash product to obtain a map

2m+n(SU><V) N 2m+n(sU><V) ®R = Zm(UR) ®R Z”(RV) Y ®R N

and thus an element x® y € m,,,,,(M®g N)(U xV); this is suitably natural so that it descends
to a map out of the Day convolution tensor product 7, M ®, 7, N to 7, (M & N). This
map is not usually an isomorphism. Instead, we construct a spectral sequence that converges
to 7, (M ®g N), in which this map appears as an edge homomorphism.

Let S denote the class of left R-modules of the form X"R¥X forn € Z and X € C. By
[19, Pr. 7.2.1.4], there exists an S-free S-hypercovering P, —> N in the (presentable) stable
oco-category Mody.

6.7. Lemma. For any S-hypercovering P, —> N, we have that |P,| = N.

Proof. LetS,,, be the subset of S on =™ o RX for m > n. From our S-hypercovering P, — N,
we obtain S,,-hypercoverings 7.,,P, — 7., N for every n € Z. Since the X"S*, X € C
constitute a set of projective generators for Mack(C; Sp.,,) by Lm. 6.6, we have that |z, P, | =
7., N by the hypercompleteness of Kan. By the right completeness of the t-structure, we
deduce that |P,| = N. O

By passing to the skeletal filtration of M® |P, |, we obtain a spectral sequence {EF, d, },5,
that converges to 7, ,(M ® N). The complex (E;"1,d,) is the normalized chain complex
N, (,(M & P.)).

To proceed, we need to prove the following analogue of [19, Pr. 7.2.1.17].

6.8. Lemma. If P is a direct sum of objects in S, then the map
Tor}**(w,M, 7, P) —> (M ® P)
is an isomorphism.

Proof. Both sides commute with direct sums and shifts, so we reduce to the case of P = R¥.
We claim first that for any spectral Mackey functor E,

n,E®1,S* =, (E®S¥).

Since 7.,S" corepresents evaluation at Y for Ab-valued Mackey functors, and 7_,S* has dual
T $PX we have (7, E®t,, S*)(Y) = (n,E)(YxDX). Similarly, corepresentability and strong
dualizability on the level of the Sp-valued Mackey functors implies that 77, (E ® SX)(Y) =
(m,.E)(Y x DX), so we conclude. Now we apply this claim both for M and R to see that

T.Me, g, (R*)=n,M®, z (1,R®1,5%)
=7, M®T1,S*

7, (M ®S¥)

=7, (M ® RY).

n

We leave the identification of the specified map with this isomorphism to the reader.  [J
We thus obtain an isomorphism
Torg*R(n*M, n.P,)=m,(M®P,).

As P, is an S-free S-hypercovering of N, N, (7, P,) is a resolution of 7, N by projective
7, R-modules. It follows that the E, page is given by

Ef’q = TorZ*R(rr*M, mT,N)g.
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Asin [19, Cor. 7.2.1.23], we have an immediate corollary.

6.8.1. Corollary. Suppose C, R, M, and N as above. Suppose that R, M, and N are all con-
nective. Then M ® N is connective, and one has an isomorphism of ordinary Mackey functors

7o (M & N) = mgM &, myN.

6.9. Example. If C is the category of finite G-sets for G a finite group, then our Kiinneth
spectral sequence recovers that of Lewis and Mandell in [15]. We refer the reader there to a
more extensive discussion of this spectral sequence in that particular case.

7- SYMMETRIC MONOIDAL WALDHAUSEN BICARTESIAN FIBRATIONS

In [3], we define an O®-monoidal Waldhausen co-category for any co-operad O® as
an O®-algebra in the symmetric monoidal co-category Wald® . We give two equivalent
fibrational formulations of this notion.

7.1. Definition. Suppose O® an co-operad. An O®-monoidal Waldhausen co-category
consists of a pair cocartesian fibration [3, Df. 3.8]

p®: X®—0O®
such that the following conditions obtain.

(7.1.1) The composite

X® — 0® — NA(F)
exhibits X® as an co-operad.

(7.1.2) The fiber p: X —> O over * € NA(F) is a Waldhausen cocartesian fibration.

(7.1.3) For any finite set I and any choice of inert morphisms {p; : s —> s;};; covering the
inert morphisms I — {i}, an edge 1 of X? is ingressive if and only if, for everyi € I,
the edge p; (17) of X, is ingressive.

(7.1.4) For any finite set I, any morphism p: s —> ¢ of O® covering the unique active
morphism I — {£}, and any choice of inert morphisms {s — s; | i € I} covering
the inert morphisms I — {i}, the functor of pairs

w[ X, =X? —X,
i€l
is exact separately in each variable [2].

Dually, suppose Og an co-anti-operad. Then a Og-monoidal Waldhausen co-category
is a pair cartesian fibration

Pe: Xg — Og
such that the following conditions obtain.
(7.1.5) The composition
Xg —> Og —> NA(F)”?
exhibits X as an co-anti-operad.
(7.1.6) The fiber p: X —> O over * € NA(F)” is a Waldhausen cartesian fibration.
(7.1.7) For any finite set I and any choice of inert morphisms {r; : s —> s;};c; covering the

inert morphisms I —> {i}, an edge 77 of X® is ingressive if and only if, for every i € I,
the edge 7" () of X is ingressive.
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(7.1.8) For any finite set I, any morphism y: t —> s of Oy covering the opposite of the
unique active morphism I — {£}, and any choice of inert morphisms {s; —> s};¢;
covering the inert morphisms I — {i}, the functor of pairs

[’4* : HXsi = X®,s - Xt
iel
is exact separately in each variable.
Employing [19, Ex. 2.4.2.4 and Pr. 2.4.2.5] and [2, Lm 1.4], one deduces the following.

7.2. Proposition. Suppose O® (respectively, Og) an co-operad (resp., an co-anti-operad).
Then the functor

0O® — Cat,, (resp., the functor (Og)? —> Cat,, )

classifying an O®-monoidal Waldhausen co-category (resp., an Og-monoidal Waldhausen
oo-category) factors through an essentially unique morphism of co-operads

0® — Wald®, (resp., the functor (Og)®? —> Wald® )

7.3. Definition. Now suppose (C,C;,C") a left complete disjunctive triple. A symmetric
monoidal Waldhausen bicartesian fibration

Pa: Xg —Cy
over (C,C;,C") is a functor of pairs Xy —> (C,)” with the following properties.

(7.3.1) The underlying functor py: Xz —> C, is an inner fibration.

(7.3.2) For any egressive morphism (¢, ) : (I, X) —> (J,Y) of C,, (in the sense of Nt. 2.1)
and for any object Q of the fiber (X)) y), there exists a py-cartesian morphism
P — Q covering (¢, w).

(7.3.3) The composition

Xy — C, —> NA(F)?

exhibits X; as an co-anti-operad.

(7.3.4) The fiber p: X —> C over * € NA(F)” is a Waldhausen bicartesian fibration
X — Cover (C,Cy, ch.

7.4. This is a lot of data, so let’s unpack it a bit.
First, a symmetric monoidal Waldhausen bicartesian fibration

Pat Xg — C

over (C,C;,C") admits an underlying Waldhausen bicartesian fibration p: X — C over
(C,Cy4,C"). This provides, for any object S € C, a Waldhausen co-category Xg, and for
any morphism ¢: S — T of C, it provides an exact “pushforward” functor ¢, : Xg — X
whenever ¢ is ingressive and an exact “pullback” functor ¢* : X; — X whenever ¢ is
egressive. These are compatible with composition, and when ¢ is ingressive and (therefore)
egressive, these two are adjoint.

There’s more structure here: for any finite set I and any I-tuple (S;);c; of objects of C with
product S, consider the cartesian edge

{858 — (1, Sp)

of C, lying over the morphism {§} —> I of A(F)? corresponding to the unique active
morphism I — {&} of A(F); it is of course egressive in X. Hence there is a functor

: ]—[XS[HXS,

i€l i€l
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exact separately in each variable. If (¢, : S; —> T;);¢; is an I-tuple of morphisms of C with
product ¢: S —> T then the square

&iel
Hie[ XT[ Xr

[Lies &7 l l¢*

l_[iEI XS,‘ &isl XS
commutes.
When (C,C;,C") is cartesian, this structure endows each fiber Xg with a symmetric
monoidal structure: indeed, for any finite set I, we may define

R - (X,
i€l i€l

where A: S —> S is the diagonal. One sees easily that the commutativity of the square above
implies that any functor ¢* induced by a morphism ¢: S — T is symmetric monoidal in a
natural way. Furthermore, a simple argument demonstrates that the external product K;;
can be recovered from the symmetric monoidal structures along with the pullback functors;
for example, X®Y = prj X ®pr; Y.

Now it follows from [19, Cor. 7.3.2.7] thatif ¢ : S— T is both ingressive and egressive
in C, then ¢, extends to a lax symmetric monoidal functor X§ — X%.

7.5. Lemma. Suppose (C,C;,C") a left complete disjunctive triple, and suppose
Pa: Xg —Cy

a symmetric monoidal Waldhausen bicartesian fibration over (C,Cy,C"). Then the inner fi-
bration

Pw: X& - C><
is an adequate inner fibration [4, Df. 10.3] for the triple (C,, (C, )+, (C)T) (Nt. 2.1).

Proof. The only condition of adequate inner fibrations that isn’t explicitly part of the def-
inition above is the assertion that for any ingressive morphism (¢, w) : (I, X) ~— (J,Y)
of C, and for any object P of the fiber (Xg); x), there exists a py-cocartesian morphism
P — Q covering (¢, w).

So suppose that (¢, w) : (I, X) > (J,Y) is ingressive — i.e., that ¢: ] —> I is a bijection
and each morphism wg-1(;) : X; —> Yy-1(;) is ingressive —, and suppose that P is an object
of Xy, that lies over (I, X). Then under the equivalence

Xa)r = [ [ Xpp
iel
the object P corresponds to a family (P,);c; of objects such that P, lies over X; for any i €
I. For each i € I, select a p-cocartesian edge P, —> Qy-1;) covering wy-1(;). Now there

is an essentially unique morphism P —> Q covering (¢, w) that corresponds under the
equivalence above to the edges P, —> Qy-1(;), and it is easy to see that it is py-cocartesian. [

If (C,Cy,C") is a left complete disjunctive triple, and if py: Xz —> C, a symmetric
monoidal Waldhausen bicartesian fibration for (C,C;,C"), then our goal is now to equip
the unfurling of X with the structure of a AT (C)®-monoidal Waldhausen structure. It will
then follow that the corresponding Mackey functor is in fact a commutative Green functor.
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7.6. Construction. Suppose (C,C,,C") a left complete disjunctive triple, and suppose
Pa: Xg—> Cy
a symmetric monoidal Waldhausen bicartesian fibration over (C, C;, C"). Then we define

Y(X/(C,C,,C"))® as the pullback

Y (Xa/(Cor (C.)42 (M) Xy icy AT(C,Cp CHE.
The inner fibration [4, Lm. 11.4]
Y (Xg/(Cy (Co)s (C)T)) —> AL(C,, (C)y, (C)T)
pulls back to an inner fibration
Y(p)®: Y(X/(C,Cy,CH)® — AF(C,C,;,CT)®.
We call this the unfurling of the symmetric monoidal Waldhausen bicartesian fibration pg.

7.7. Suppose, for simplicity, that (C, CT,CT) is cartesian. Unwinding the definitions, one
sees that the objects of Y(X/(C, C;, C"))® are precisely the objects of X. These, in turn, can
be thought of as triples (I, S, Ps ) consiting of a finite set I, an I-tuple S; := (S;);¢;, and an
object Pg of the fiber

(X®)51 = H Xsi’

i€l

which corresponds to an I-tuple (P );¢; of objects of the various Waldhausen co-categories
Xs,-Nowa morphism (J, T}, QT’) — (LS, Ps,) of the unfurling Y (X/(C, C;, C™))® can be
thought of as the following data:
(7.7.1) amorphism ¢: ] —> I of A(F);
(7.7.2) acollection of diagrams

U,
. () Ty
Z/ \jﬁ(]) ] € ¢—1 (I)
T S(j)>
of C such that for any j € (/5_1 (I), the morphism 0;: Uy — Sy j) is ingressive, and
the morphism 7;: Uy — T; is egressive; and
(7.7.3) a collection of morphisms

{aqs(j),gT]f (QTJ,) — P ‘ i€ I]»

Jj€li
in the various co-categories Xs,» where 7y is the edge ({i}, U;) — (J;, TL-) correspond-
ing to the tuple (7));¢; -
7.8. Theorem. Suppose (C,C;,C") a left complete disjunctive triple, and suppose

Pr: Xg — Cy
a symmetric monoidal Waldhausen bicartesian fibration over (C,Cy,C"). Then the functor

Y (p)® exhibits the co-category Y (X/(C, Cy,C"))® as a AT(C, C,, C)®-monoidal Waldhau-
sen 00-category.
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Proof. We first observe that, in light of [4, Pr. 11.6] and Lm. 7.5, the functor Y(p)® is a
cocartesian fibration. Let us check that the composite cocartesian fibration

Y(X/(C,Cy,C))® — AT(C,C,,CT)® — NA(F)

exhibits Y (X/(C, C;, ChH)®asa symmetric monoidal co-category.
To this end, it suffices to show that for any finite set I and any I-tuple S; := (S;);c; of
objects of C, the functor

[Tx: Xa)s, = YX/(C.Cr,CNE — [[YX/(C.CraC)s, = [ ] X,

iel i€l i€l
induced by the cocartesian edges covering the inert maps y;: I —> {i}, is an equivalence.
But this morphism can be identified with

H(m,oidmg) T — ]

iel iefi} iel iel
which is homotopic to the identity.

Now for any finite set J, a morphism T —> S of AT(C, C;,C")® covering the unique
active morphism J — {&} is represented by a collection of spans

¢ v
N e
T; S.
The tensor product functor can therefore be written as
vie¢r °E: HXTj =Xr — X
i jel
which is exact separately in each variable. d

In light of Pr. 7.2, we have the following.

7.8.1. Corollary. Suppose (C,Cy,C") a cartesian disjunctive triple that is either left complete
or right complete, and suppose pg : Xy —> C, a symmetric monoidal Waldhausen bicartesian
fibration over (C, Cy,C"). Then the cocartesian fibration Y (p)® is classified by a Green functor

M3 : AT(C,C;,C")® — Wald3,.

8. EQUIVARIANT ALGEBRAIC K-THEORY OF GROUP ACTIONS

In this section, we answer a question of Akhil Mathew. Namely, for any Waldhausen co-
category C with an action of a finite group G, can one form an equivariant algebraic K-theory
spectrum K;(C) whose H-fixed point spectrum is the algebraic K-theory of the homotopy
fixed point co-category C"H? Furthermore, can one do this in a lax symmetric monoidal
fashion, so that if C is an algebra in Waldhausen co-categories over an co-operad O%, then
K(C) is an algebra over O® in Mack(F; Sp)? The answer to both of these questions is yes,
and our framework makes it an almost trivial matter to see how.

8.1. Construction. Suppose G a finite group. Let denote by Fg“ C F; the full subcat-

egory spanned by those finite G-sets upon which G acts freely. Observe that Fmee is the
finite-coproduct completion of BG; that is, it is the free co-category with finite coproducts
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generated by BG. Consequently, A% (ng‘”) is the free semiadditive co-category generated by
BG; that is, evaluation at G/e defines an equivalence

Mack(Fgee; A) —=> Fun(BG, A).

At the same time, the subcategory Fgee C F; is clearly closed under coproducts, and since

Fjgee is a sieve in F, it follows that it is stable under pullbacks and binary products as well.
Consequently, we obtain a fully faithful inclusion

AT(EE) — AD(Fg).
We thus obtain, for any semiadditive co-category A, a corresponding restriction functor
Mack(F; A) — Mack(E[¥; A).
If A is an addition presentable, then the restriction functor admits a right adjoint
B : Fun(BG, A) — Mack(Fg; A),

given by right Kan extension. We shall call this the Borel functor, since it assigns to any “naive”
G-object the corresponding Borel-equivariant object.

Applying this when A = Wald, and apply algebraic K-theory, we obtain the algebraic
K-theory of group actions:

Ko Bg : Fun(BG, Wald ) — Mack(Fg; Sp).

8.2. Proposition. The algebraic K-theory of group actions extends naturally to a lax symmetric
monoidal functor

K® o B2 : Fun(BG, Wald,)® —> Mack(F; Sp)®.

for the objectwise symmetric monoidal structure relative to the symmetric monoidal structure
on Wald, [2] and the additivized Day convolution on spectral Mackey functors.

Proof. Since K® is lax symmetric monoidal [2], it suffices to show that for any presentable
semiadditive symmetric monoidal co-category E®, the Borel functor Bg; extends to a sym-
metric monoidal functor

BE: Fun(BG, E)® = Mack(F/*; A)® — Mack(F; E)°®.
This will follow directly from [19], once one knows that the restriction functor
Mack(Fg; E) — Fun(BG, E)

extends to a symmetric monoidal functor Mack(F; E)® — Mack(Fgee; A)® = Fun(BG, E)®.
For this, observe that since FZ“ C Fg; is stable under binary products, the inclusion

Aeﬁ(Fjgee) I Aeﬁ(FG)
extends to a symmetric monoidal functor
Aeﬁ(Fgee)g; . Aeﬁ”(FG)®_
It thus suffices to note that for any free finite G-set V, the subcategory
(AT (F) x AL (E)) X e ATEE) )y < (AT (Bg) x AD(Fg)) X gerr, ) AT (R v

is cofinal. O
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9. EQUIVARIANT ALGEBRAIC K-THEORY OF DERIVED STACKS
In this section, we construct two symmetric monoidal Waldhausen bicartesian fibrations
that extend the following two Waldhausen bicartesian fibrations introduced in [4, $D]:
» the Waldhausen bicartesian fibration

Perf®? Xshy,, DM — DM

for the left complete disjunctive triple (DM, DMgp, DM) of spectral Deligne-Mum-
ford stacks, in which the ingressive morphisms are strongly proper morphisms of
finite Tor-amplitude, and all morphisms are egressive [4, Pr. D.18], and

» the Waldhausen bicartesian fibration

Perf” —> Shvy,,

for the left complete disjunctive triple (Shvy,,, Shvg,, qp, Shvg,,) of flat sheaves in
which the ingressive morphisms are the quasi-affine representable and perfect mor-
phisms, and all morphisms are egressive [4, Pr. D.21].

These will give algebraic K-theory the structure of a commutative Green functor for these
two triples.

9.1. To begin, we let

Mod® QCoh®

| |

CAlg® x NA(F) — Shv}’lﬂt x NA(F)

be a pullback square in which g is the cocartesian fibration of [19, Th. 4.5.3.1], and p
is a cocartesian fibration classified by the right Kan extension of the functor that classi-
fies g. The objects of QCoh® can be thought of as triples (X, I, M;) consisting of a sheaf
X: CAlg” — Kan(k, ) for the flat topology, a finite set I, and an I-tuple M; = {M,};.; of
quasicoherent modules M over X.

9.2. We may now pass to the cocartesian co-operads to obtain a cocartesian fibration of
0o-operads

p": (QCoh®)” — (Shvih, x NA(F))Y = (Shvp,, ) Xy NAE).
Now NA(F)Y — NA(F) admits a section that carries any finite set I to the pair (I, *;),

where *; = {x};.;. Let us pull back p" along this section to obtain a cocartesian fibration of
0o-operads

p™: QCoh™ = (QCoh®)" Xy pyu NA(F) —> (Shvg,, . )”.
9.3. Passing to opposites, we obtain a functor
(QCoh”), = (QCoh™)” —> Shvy,, .
which
» restricts to a symmetric monoidal Waldhausen bicartesian fibration
(QCoh™), X, DM, —> DM,

that extends the Waldhausen bicartesian fibration of [4, Pr. D.10] for the disjunctive
triple of spectral Deligne-Mumford stacks, in which the ingressive morphisms are
relatively scalloped, and all morphisms are egressive, and
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» gives a symmetric monoidal Waldhausen bicartesian fibration
(QCoh”)y —> Shvy,,

that extends the Waldhausen bicartesian fibration of [4, Pr. D.13] for the disjunc-
tive triple of flat sheaves, in which the ingressive morphisms are quasi-affine repre-
sentable, and all morphisms are egressive.

9.4. Atlast, restricting to perfect modules, we obtain the desired symmetric monoidal Wald-
hausen bicartesian fibrations

(Perfﬂp)x X(Shvjlat)x DMX —_— DM><
for (DM, DMgp, DM) and
(Perf)y —> (Shvg,,),
for (Shvﬂat’ Shvﬂat,QP’ Shvﬂat)'

Now, passing to the unfurling, we obtain the following pair of results.
9.5. Proposition. The Mackey functor
Mpy : A7 (DM, DMgp, DM) —> Wald,,,

of [4, Cor. D.18.1] admits a natural structure of a commutative Green functor M. In par-
ticular, the algebraic K-theory of spectral Deligne-Mumford stacks is naturally a commutative
spectral Green functor for (DM, DMgp, DM).

9.6. Proposition. The Mackey functor
Mgpy,,, : A7 (Shvpy, Shvg,, qp, Shvg,,) — Wald,,

of [4, Cor. D.21.1] admits a natural structure of a commutative Green functor M?hvﬂm' In

particular, the algebraic K-theory of flat sheaves is naturally a commutative spectral Green
Junctor for (Shvp,, Shvg,, qp, Shvg,,).

9.7. Construction. Suppose X a spectral Deligne-Mumford stack. As in [4, Nt. D.23], we
denote by FEt(X) the subcategory of DM, x whose objects are finite [18, Df. 3.2.4] and étale
morphisms Y — X and whose morphisms are finite and étale morphisms over X. Observe
that the fiber product — xy — endows FEt(X) with the structure of a cartesian disjunctive
0o-category. We will abuse notation and write A%(X)® for the symmetric monoidal effective
Burnside co-category of FEt(X).

Now the inclusion

(FEt(X), FEt(X), FEt(X)) — (DM, DMgp, DM)

is clearly a morphism of cartesian disjunctive triples, whence one can restrict the commuta-
tive Green functor M$,; above along the morphism of co-operads

AT(X)® —> A¥(DM, DMgp, DM)®
to a commutative Green functor
My : AT(X)® — Wald®,.

Now if X is (say) a connected, noetherian scheme, then a choice of geometric point x of
X gives rise to an equivalence

AT (75X, x))® =~ AF(X)®.
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Applying algebraic K-theory, we obtain a commutative spectral Green functor for the étale
fundamental group:

K x 0 (0« AT (mf (X, 2))® — Sp°.

This commutative Green functor deserves the handle Galois-equivariant algebraic K-theory.

10. AN EQUIVARIANT BARRATT-PRIDDY-QUILLEN THEOREM

10.1. Notation. In this section, suppose (C,C;,C") a cartesian disjunctive triple.

10.2. Recollection. Recall [4, Df. 13.5] that R(C) ¢ Fun(42/A*%,C) is the full subcategory
spanned by those retract diagrams

SO —> Sl e SO;
such that the morphism S; — S, is a summand inclusion. We endow R(C) with the structure
of a pair in the following manner. A morphism T — S will be declared ingressive just in

case T, — S, is an equivalence, and T} — S, is a summand inclusion. Write p for the
functor R(C) —> C given by evaluation at the vertex 0 = 2:

[SO —> Sl —> So] N> So.
Recall also that R(C, C;,C") ¢ R(C) is the full subcategory spanned by those objects
S: A2/AH . C
such that for any complement S} < S; of the summand inclusion S, < S,
(10.2.1) the essentially unique morphism Sj —> 1 to the terminal object of C is egressive,
and
(10.2.2) the composite S —> S; —> S, is ingressive.
We endow R(C, C;, C™) with the pair structure induced by R(C). We will abuse notation by
denoting the restriction of the functor p: R(C) — C to the subcategory R(C,C,,C") ¢

R(C) again by p.
We proved in [4, Th. 13.11] that p is a Waldhausen bicartesian fibration over (C, C;, ch.

10.3. Construction. Recall that an object of the co-category R(C, C;, C"), can be described
as pairs (I, X) consisting of a finite set I and a collection X = {X; | i € I} of objects of
R(C, CT,CT) indexed by the elements of I. Accordingly, a morphism (I, X) — (J,Y) of
R(C,C;,C"), can be described as a map ] — I, of finite sets and a collection

{X,- — [y ‘ i€ 1}
Jj€li
of morphisms of R(C, C, ch.
We now define a subcategory R(C, C;, ChHg c R(C, Cs, C™), that contains all the objects.
A morphism (I, X) — (], Y) of R(C, CT,CT)>< is a morphism of R(C, CT,CJ’)E if and only
if, for every i € I, every nonempty proper subset K; C J;, and every choice of a complement
lg)() Y, of the summand inclusion ¥, < Y, the square

10 Xi1

| i

HjeK,. Yj,O X Hje],-\K» Y],() Hje]‘. 1§,1’

i
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in which & is initial and the bottom morphism is the obvious summand inclusion, is a
pullback.

Let us endow this co-category with a pair structure in the following manner. We declare
a morphism (I, X) — (J,Y) of R(C, C;, Chg to be ingressive just in case the map ] — I,
represents an isomorphism in A(F), and, for every i € I, the map X; — Yy;) of R(C, C,, ch
is ingressive.

The following is now immediate.
10.4. Proposition. The functor
P R(C,C,,CNg — C,

given by evaluation at 0 = 2 in A /A% exhibits R(C, Cs» C") as a symmetric monoidal Wald-
hausen bicartesian fibration over (C,Cy, ch.

10.5. Construction. Now we may the unfurling construction of [4, §11] to the symmet-
ric monoidal Waldhausen bicartesian fibration py to obtain an AT(C, Cs» C")®-monoidal
Waldhausen co-category (in the sense of [2])

Y(p)®: Y(R(C,C,,CH/(C,Cy, CH))® — AF(C, C,, CHE.
As we've demonstrated, Y (p)® is classified by an E,, Green functor
M$: AT(C,C;,C")® — Waldg,
whose underlying functor is the Mackey functor
M,: AF(C,C,,C") — Wald,,,

corresponding to the unfurling of the Waldhausen bicartesian fibration R(C, C;,C") — C
over (C,Cy, ch.

In [2], we demonstrated that algebraic K-theory lifts in a natural fashion to a morphism
of co-operads, whence we may contemplate the commutative Green functor

K® o M%: AF(C,C;,C)® — Sp®.
Observe that by [4, Th. 13.12], the underlying Mackey functor
S(C,CT,CT) =Ko MP

of K®o M? is the spectral Burnside Mackey functor for (C, C;, C"), as defined in [4, Df. 8.1].

In particular, it is unit for the symmetric monoidal co-category Mack(C, C;, C'; Sp), which
of course admits an essentially unique E_, structure. Consequently, we deduce the following.

10.6. Theorem (Equivariant Barratt-Priddy-Quillen). The Green functor K® o M;’; is the
spectral Burnside Green functor Scc, cr)-

Of course, this result directly implies the original Barratt-Priddy-Quillen Theorem, which
states that the algebraic K-theory of the ordinary Waldhausen category F, of pointed finite
sets (in which the cofibrations are the monomorphisms) is the sphere spectrum S. Further-
more, the essentially unique E_, structure on § is induced by the smash product of pointed
finite sets.
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11. A BRIEF EPILOGUE ABOUT THE THEOREMS OF GUILLOU-MAY

Suppose G a finite group. Write OrthSp, for the underlying co-category of the rela-
tive category of orthogonal G-spectra. The Equivariant Barratt-Priddy-Quillen Theorem
of Guillou-May [12] provides a similar description in OrthSp,, of certain mapping spec-
tra. Note that this is not a priori related to Th. 10.6 when C = F;. Nevertheless, a suitable
comparison theorem (which of course Guillou-May provide in [13]) offers an implication.

On the other hand, the proof of our result here, combined with work from our forth-
coming book [6], will allow us to reprove, using entirely different methods, the comparison
result of Guillou-May. Indeed, if we can extend the functor 2{° : F; — OrthSp,; to a suit-
able functor A7 (F;) —> OrthSp_, then the Equivariant Barratt-Priddy-Quillen Theorem
above and the Schwede-Shipley theorem [20] together will imply the result of Guillou-May
[13] providing the equivalence

Sp¢ = OrthSp,,.

It is, however, difficult to construct the desired functor A%(F;) —> OrthSp,; directly,
as this involves nontrivial homotopy coherence problems. However, in the language of G-
equivariant co-category theory, which we develop in the forthcoming [6] provides a univer-
sal property for the G-equivariant effective Burnside co-category. This will provide us with
the desired functor, and we will easily deduce the desired equivalence as a corollary.
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