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Our goal in this talk is to present Lindel’s proof of the geometric case of
the Bass–Quillen conjecture.

The statement

Theorem (Serre’s conjecture, proved by Quillen and Suslin). If 𝑘 is a field, then
every finitely generated projective module over 𝑘[𝑡1,… , 𝑡𝑛] is free.1 1 This was discussed last week.

Conjecture (Bass–Quillen). Suppose 𝐴 a regular ring, and suppose 𝑃 a finitely
generated projective module over 𝐴[𝑡1,… , 𝑡𝑛]. Then 𝑃 is extended from 𝐴; that
is, one has

𝑃 ≅ 𝑃0 ⊗𝐴 𝐴[𝑡1,… , 𝑡𝑛],

where
𝑃0 ≅ 𝑃/(𝑡1,… , 𝑡𝑛)𝑃.

Theorem (Quillen–Suslin). The Bass–Quillen conjecture holds for dim𝐴 ≤ 2.2 2 This too was discussed last week.

Theorem (Lindel). The Bass–Quillen conjecture holds for 𝐴 essentially of finite
type3 over a field 𝑘. 3 A 𝑘-algebra is essentially of finite type if it is

a localization of a finite type 𝑘-algebra.

Easy reductions

Lemma. It suffices to assume that 𝐴 is a regular local ring; in particular, we
may assume that

𝐴 ≅ 𝐶𝑝, where 𝐶 = 𝑘[𝑥1,… ,𝑥𝑚]/(𝑓1,… ,𝑓𝑟)

and 𝑝◁𝐶 is a prime ideal.

Proof. Quillen patching.4 4 Also from last week.

Lemma. It suffices to assume that 𝑘 is perfect (even prime).

Proof. Let 𝑘0 ⊂ 𝑘 denote the prime field. Since 𝑃 is projective, it is the image
of an idempotent endomorphism 𝛼 on a free 𝐴[𝑡1,… , 𝑡𝑛]-module. Now let
𝑘0 ⊂ 𝑘′ ⊂ 𝑘 denote the subfield generated by the coefficients of 𝑓1,… ,𝑓𝑟 and
the entries of a matrix representing 𝛼. Set

𝐶′ ≔ 𝑘′[𝑥1,… ,𝑥𝑚]/(𝑓1,… ,𝑓𝑟) and 𝑝′ ≔ 𝑝 ∩𝐶′ and 𝐴′ ≔ 𝐶′𝑝′ .

Since 𝛼 is defined over 𝐴′[𝑡1,… , 𝑡𝑛], it follows that

𝑃 ≅ 𝑃′ ⊗𝐴′[𝑡1,…,𝑡𝑛] 𝐴[𝑡1,… , 𝑡𝑛]

for some finitely generated projective 𝐴′[𝑡1,… , 𝑡𝑛]-module 𝑃′.
Now observe that 𝐴 ≅ 𝐴′ ⊗𝑘′ 𝑘 is a faithfully flat extension of 𝐴, whence
𝐴′ is also regular. Furthermore, 𝑘′ is finitely generated over 𝑘0, whence 𝐴′ is
essentially of finite type over 𝑘0.



Induction hypothesis

Write 𝑑 ≔ dim𝐴. The Quillen–Suslin theorem addresses the case 𝑑 ≤ 2. So we
assume that 𝑑 ≥ 3 and that Lindel’s theorem holds for 𝑘-algebras essentially of
finite type of dimension < 𝑑.

Reducing the dimension via descent

Lemma (Nisnevich descent). Suppose 𝜙 ∶ 𝑆 𝑅 an étale homomorphism of
rings, and suppose 𝑥 ∈ 𝑆. Assume that 𝜙(𝑥) is not a zerodivisor. If 𝜙 induces an
isomorphism 𝑆/𝑥 ∼ 𝑅/𝜙(𝑥), then the square5 5 After applying Spec, this square becomes

a elementary distinguished square. Conse-
quently, this lemma is the key special case
of the assertion that Proj is a sheaf of exact
categories for the Nisnevich site.

𝑆 𝑅

𝑆𝑥 𝑅𝜙(𝑥)

𝜙

is a pullback of rings, and the corresponding square

Proj(𝑆) Proj(𝑅)

Proj(𝑆𝑥) Proj(𝑅𝜙(𝑥))

− ⊗𝑆 𝑅

(−)𝑥 (−)𝜙(𝑥)

− ⊗𝑆𝑥 𝑅𝜙(𝑥)

is a pullback square of exact categories.

Sketch of proof.6 The first statement is trivial. For the second statement, we 6 The proof given by Milnor in Ch. 2 of his
text on algebraic 𝐾-theory works with only
trivial modifications.

construct a functor

Proj(𝑆𝑥) ×Proj(𝑅𝜙(𝑥)) Proj(𝑅) Proj(𝑆)

by the fiber product:

(𝑄,𝑃,𝜎 ∶ 𝑄 ⊗𝑆𝑥 𝑅𝜙(𝑥) ≅ 𝑃𝜙(𝑥)) 𝑄 ×𝑃𝜙(𝑥) 𝑃;

one notes that the 𝑆-module 𝑄 ×𝑃𝜙(𝑥) 𝑃 is finitely generated and projective. To
complete the proof, one must prove two facts:

▶ For any (𝑄,𝑃,𝜎) as above, one has natural isomorphisms

(𝑄 ×𝑃𝜙(𝑥) 𝑃)𝑥 ≅ 𝑄 and (𝑄 ×𝑃𝜙(𝑥) 𝑃) ⊗𝑆 𝑅 ≅ 𝑃.

▶ For any finitely generated projective 𝑆-module 𝐸, one has a natural isomor-
phism

𝐸 ≅ 𝐸𝑥 ×(𝐸⊗𝑆𝑅)𝜙(𝑥) (𝐸 ⊗𝑆 𝑅).

Definition. The pair (𝜙,𝑥) together will be called an elementary Nisnevich
cover.

Corollary. Suppose (𝜙 ∶ 𝑆 𝑅,𝑥 ∈ 𝑆) an elementary Nisnevich cover, and
suppose 𝑃 an 𝑅-module such that 𝑃𝜙(𝑥) is free. Then there exists a projective
𝑆-module 𝑃′ such that 𝑃′ ⊗𝑆 𝑅 ≅ 𝑃.



A key special case

Lemma (Special case). Suppose𝑚 = (𝑓(𝑥1),𝑥2,… ,𝑥𝑑) ◁ 𝑘[𝑥1,… ,𝑥𝑑] a
maximal ideal. Then the Bass–Quillen conjecture holds for the regular local ring

𝐵 = 𝑘[𝑥1,… ,𝑥𝑑]𝑚.

Proof. Set
𝐵0 ≔ 𝑘[𝑥1,… ,𝑥𝑑−1](𝑓(𝑥1),𝑥2,…,𝑥𝑑−1),

and consider the homomorphism 𝐵0[𝑥𝑑] 𝐵. Note that the pair

(𝐵0[𝑥𝑑, 𝑡1,… , 𝑡𝑛] 𝐵[𝑡1,… , 𝑡𝑛],𝑥𝑑)

is an elementary Nisnevich cover.
Suppose𝑀 a finitely generated projective 𝐵-module. Now dim𝐵𝑥𝑑 < 𝑑, so

by the induction hypothesis,𝑀𝑥𝑑 is extended from 𝐵𝑥𝑑 , hence free. Now by
Nisnevich descent, there exists a finitely generated projective 𝐵0[𝑥𝑑, 𝑡1,… , 𝑡𝑛]-module
𝑀′ such that

𝑀 ≅𝑀′ ⊗𝐵0[𝑥𝑑,𝑡1,…,𝑡𝑛] 𝐵[𝑡1,… , 𝑡𝑛].

Observe that dim𝐵0 < 𝑑 as well. The inductive hypothesis thus implies that
𝑀′ is free, whence so is𝑀.

Reduction to the special case

Lemma (Nashier). There exists an elementary Nisnevich cover (𝜙 ∶ 𝐵 𝐴, ℎ)
such that 𝐵 ≅ 𝐶𝑚 for

𝐶 = 𝑘[𝑥1,… ,𝑥𝑑] and 𝑚 = (𝑓(𝑥1),𝑥2,… ,𝑥𝑑) ◁𝐶 𝐵 𝐴

𝐵ℎ 𝐴𝜙(ℎ)

𝜙

a maximal ideal.

Proof of Lindel’s Theorem from Nashier’s Lemma. By the induction hypothesis,
since dim𝐴𝜙(ℎ) < 𝑑, the projective 𝐴𝜙(ℎ)-module 𝑃𝜙(ℎ) is free. By Nisnevich
descent, there exists a finitely generated projective 𝐵-module 𝑃′ such that

𝑃′ ⊗𝐵 𝐴 ≅ 𝑃.

Our special case now applies, so 𝑃′ is free, whence so is 𝑃.

Proof of Nashier’s Lemma. Denote by𝑚𝐴 ◁𝐴 the maximal ideal, and choose a
nonzero element 𝑎 ∈ 𝑚2𝐴. One may select7 a regular sequence 𝑎,𝑥2,… ,𝑥𝑑 and 7 by prime avoidance

an element 𝑧 ∈ 𝑚𝐴 such that𝑚𝐴 = (𝑧,𝑥2,… ,𝑥𝑑).
In particular, the sub-𝑘-algebra of 𝐴 generated by {𝑎,𝑥2,… ,𝑥𝑑} is a poly-

nomial ring 𝑘[𝑎,𝑥2,… ,𝑥𝑑] ⊂ 𝐴. Let 𝐶′ ⊂ 𝐴 denote the integral closure of
𝑘[𝑎,𝑥2,… ,𝑥𝑑] in 𝐴. One notes that8 8 since𝑚𝐴 ∩ 𝑘[𝑎,𝑥2,… ,𝑥𝑑] = (𝑎,𝑥2,… ,𝑥𝑑)

𝑚′ ≔ 𝑚𝐴 ∩𝐶′



is maximal in 𝐶′.
We now claim that 𝐴 = 𝐶′𝑚′ . This follows from Zariski’s MainTheorem. The

important thing to note is that the fraction fields 𝐾(𝑘[𝑎,𝑥2,… ,𝑥𝑑]) and𝐾(𝐴)
have the same transcendence degree over 𝑘, whence the extension

𝐾(𝑘[𝑎,𝑥2,… ,𝑥𝑑]) ⊂ 𝐾(𝐴)

is algebraic. Consequently, 𝐾(𝐶′) = 𝐾(𝐴), and 𝐶′ is finite over 𝑘[𝑎,𝑥2,… ,𝑥𝑑],
so Zariski’s MainTheorem applies.

For any 𝑠 ∈ 𝐶′, write 𝑠 ≔ 𝑠 +𝑚′ ∈ 𝐶′/𝑚′. Since 𝑘 is perfect, there exists
𝑠 ∈ 𝐶′ such that 𝐶′/𝑚′ is the field 𝑘(𝑠). Let 𝑓 denote the minimal polynomial
of 𝑠.9 Since 𝐴 = 𝐶′𝑚′ , the 𝐶

′/𝑚′-vector space𝑚′/(𝑚′)2 is generated by 9 In particular,

𝑓(𝑠) ∈ 𝑚′ and 𝑓′(𝑠) ∉ 𝑚′,

and for any 𝑦 ∈ 𝑚′,

𝑓(𝑠 + 𝑦) = 𝑓(𝑠) + 𝑓′(𝑠)𝑦 mod (𝑚′)2.

{𝑧,𝑥1,… ,𝑥𝑑}, whence

𝑓(𝑠) = 𝑏1𝑧 + 𝑏2𝑥1 +⋯+ 𝑏𝑑𝑥𝑑

with 𝑏1,… , 𝑏𝑑 ∈ 𝐶′/𝑚′. Now replacing 𝑠 with 𝑠 + 𝑧 if 𝑏1 = 0, one ensures that

𝑚′ = (𝑓(𝑠),𝑥2,… ,𝑥𝑑) + (𝑚′)2.

Write𝑚′,𝑚′2,… ,𝑚′𝑟 ◁𝐶′ for the maximal ideals that lie over

(𝑎,𝑥2,… ,𝑥𝑑) ◁ 𝑘[𝑎,𝑥2,… ,𝑥𝑑].

Choose 𝑥1 ∈ 𝑚′2 ∩⋯∩𝑚′𝑟 such that

𝑥1 = 𝑠 mod (𝑚′)2.

Replacing 𝑥1 by 𝑥1 + 𝑎𝑡 if necessary, one ensures that 𝑎 is integral over
𝑘[𝑥1,… ,𝑥𝑑]. The only maximal ideal of 𝐶′ that contains (𝑎,𝑓(𝑥1),𝑥2,… ,𝑥𝑑)
is𝑚′, and since 𝑓(𝑥1) = 𝑓(𝑠) mod (𝑚′)2, it follows that

𝑚′ = (𝑓(𝑥1),𝑥2,… ,𝑥𝑑) + (𝑚′)2,

whence𝑚′ = (𝑎,𝑓(𝑥1),𝑥2,… ,𝑥𝑑).
Now set

𝐶 ≔ 𝑘[𝑥1,… ,𝑥𝑑], and 𝑚 = (𝑓(𝑥1),𝑥2,… ,𝑥𝑑) and 𝐵 ≔ 𝐶𝑚.

Note that Nakayama’s Lemma implies10 10 since𝑚𝐴 ∩𝐶 = 𝑚 and𝑚𝐴 = (𝑚, 𝑎)

𝐴 = 𝐶′𝑚′ = 𝐵[𝑎](𝑚,𝑎).

Observe also that

𝐴 = 𝐵 + 𝑎𝐴 and 𝐵/(𝐵 ∩ 𝑎𝐴) = 𝐴/𝑎𝐴.

Let 𝑔(𝑢) = 𝑢𝑛 + 𝑐𝑛−1𝑢𝑛−1 +⋯+ 𝑐0 be the minimal polynomial of 𝑎 over 𝐶.
Set

ℎ ≔ 𝑐0 = −(𝑐1 + 𝑐2𝑎 +⋯+ 𝑐𝑛−1𝑎𝑛−2 + 𝑎𝑛−1)𝑎.



Our claim is now that the pair (𝐵 𝐴, ℎ) is the desired elementary
Nisnevich cover. To show that 𝐵/ℎ𝐵 𝐴/ℎ𝐴 is an isomorphism, we must
argue that

ℎ𝐵 = ℎ𝐴 ∩ 𝐵 and 𝐴 = 𝐵 + ℎ𝐴.

The first claim follows from the fact that 𝐴 = 𝐵[𝑎](𝑚,𝑎) is flat as a 𝐵-module,
and hence (since 𝐴 is local) faithfully flat over 𝐵.

To prove the second claim, it suffices to show that

𝑐1 ∉ 𝑚.

For this, since 𝑎 ∈ 𝑚2𝐴 and since𝑚𝐴 is generated by𝑚 in 𝐴, there are elements
𝜇𝑖, 𝜈𝑖 ∈ 𝐶 with 𝜇0, 𝜇1 ∈ 𝑚 and 𝜈0 ∉ 𝑚 such that

(𝜈0 +⋯+ 𝜈𝑟𝑎𝑟)𝑎 = 𝜇0 +⋯+ 𝜇𝑟𝑎𝑟

Consequently, there is ℎ(𝑢) = 𝛼0 +⋯ + 𝛼𝑟𝑢𝑟 ∈ 𝐶[𝑢] such that ℎ(𝑎) = 0 but
𝛼1 ∉ 𝑚, and since 𝑔 divides ℎ, it follows that 𝑐1 ∉ 𝑚.
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