The Bass-Quillen conjecture

19 February 2015

Our goal in this talk is to present Lindel's proof of the geometric case of the Bass–Quillen conjecture.

The statement

Theorem (Serre's conjecture, proved by Quillen and Suslin). *If* k *is a field, then* every finitely generated projective module over $k[t_1, ..., t_n]$ is free.¹

Conjecture (Bass–Quillen). Suppose A a regular ring, and suppose P a finitely generated projective module over $A[t_1, \ldots, t_n]$. Then P is extended from A; that is, one has

$$P \cong P_0 \otimes_A A[t_1, \dots, t_n],$$

where

$$P_0 \cong P/(t_1, \dots, t_n)P.$$

Theorem (Quillen–Suslin). *The Bass–Quillen conjecture holds for* dim $A \le 2.^2$

Theorem (Lindel). The Bass–Quillen conjecture holds for A essentially of finite $type^3$ over a field k.

² This too was discussed last week.

¹ This was discussed last week.

³ A *k*-algebra is *essentially of finite type* if it is a localization of a finite type *k*-algebra.

Easy reductions

Lemma. It suffices to assume that A is a regular local ring; in particular, we may assume that

$$A \cong C_p$$
, where $C = k[x_1, \dots, x_m]/(f_1, \dots, f_r)$

and $p \triangleleft C$ is a prime ideal.

Proof. Quillen patching.4

⁴ Also from last week.

Lemma. *It suffices to assume that k is perfect (even prime).*

Proof. Let $k_0 \in k$ denote the prime field. Since P is projective, it is the image of an idempotent endomorphism α on a free $A[t_1,\ldots,t_n]$ -module. Now let $k_0 \in k' \in k$ denote the subfield generated by the coefficients of f_1,\ldots,f_r and the entries of a matrix representing α . Set

$$C' := k'[x_1, \dots, x_m]/(f_1, \dots, f_r)$$
 and $p' := p \cap C'$ and $A' := C'_{p'}$.

Since α is defined over $A'[t_1, \dots, t_n]$, it follows that

$$P\cong P'\otimes_{A'[t_1,\dots,t_n]}A[t_1,\dots,t_n]$$

for some finitely generated projective $A'[t_1, ..., t_n]$ -module P'.

Now observe that $A \cong A' \otimes_{k'} k$ is a faithfully flat extension of A, whence A' is also regular. Furthermore, k' is finitely generated over k_0 , whence A' is essentially of finite type over k_0 .

Induction hypothesis

Write $d := \dim A$. The Quillen–Suslin theorem addresses the case $d \le 2$. So we assume that $d \ge 3$ and that Lindel's theorem holds for k-algebras essentially of finite type of dimension < d.

Reducing the dimension via descent

Lemma (Nisnevich descent). Suppose $\phi: S \longrightarrow R$ an étale homomorphism of rings, and suppose $x \in S$. Assume that $\phi(x)$ is not a zerodivisor. If ϕ induces an isomorphism $S/x \xrightarrow{\sim} R/\phi(x)$, then the square⁵

$$S \xrightarrow{\phi} R$$

$$\downarrow \qquad \qquad \downarrow$$

$$S_x \longrightarrow R_{\phi(x)}$$

is a pullback of rings, and the corresponding square

$$\begin{array}{ccc} \mathbf{Proj}(S) & \xrightarrow{-\otimes_{S} R} & \mathbf{Proj}(R) \\ \xrightarrow{(-)_{x}} & & \downarrow \xrightarrow{(-)_{\phi(x)}} \\ \mathbf{Proj}(S_{x}) & \xrightarrow{-\otimes_{S_{x}} R_{\phi(x)}} & \mathbf{Proj}(R_{\phi(x)}) \end{array}$$

is a pullback square of exact categories.

Sketch of proof. ⁶ The first statement is trivial. For the second statement, we construct a functor

$$\mathbf{Proj}(S_x) \times_{\mathbf{Proj}(R_{\phi(x)})} \mathbf{Proj}(R) \longrightarrow \mathbf{Proj}(S)$$

by the fiber product:

$$(Q, P, \sigma: Q \otimes_{S_x} R_{\phi(x)} \cong P_{\phi(x)}) \leadsto Q \times_{P_{\phi(x)}} P;$$

one notes that the *S*-module $Q \times_{P_{\phi(x)}} P$ is finitely generated and projective. To complete the proof, one must prove two facts:

► For any (Q, P, σ) as above, one has natural isomorphisms

$$(Q \times_{P_{\phi(x)}} P)_x \cong Q$$
 and $(Q \times_{P_{\phi(x)}} P) \otimes_S R \cong P$.

► For any finitely generated projective *S*-module *E*, one has a natural isomorphism

$$E \cong E_x \times_{(E \otimes_S R)_{\phi(x)}} (E \otimes_S R).$$

Definition. The pair (ϕ, x) together will be called an *elementary Nisnevich cover*.

Corollary. Suppose $(\phi: S \longrightarrow R, x \in S)$ an elementary Nisnevich cover, and suppose P an R-module such that $P_{\phi(x)}$ is free. Then there exists a projective S-module P' such that $P' \otimes_S R \cong P$.

⁵ After applying Spec, this square becomes a *elementary distinguished square*. Consequently, this lemma is the key special case of the assertion that **Proj** is a sheaf of exact categories for the Nisnevich site.

⁶ The proof given by Milnor in Ch. 2 of his text on algebraic *K*-theory works with only trivial modifications.

A key special case

Lemma (Special case). Suppose $m = (f(x_1), x_2, ..., x_d) \triangleleft k[x_1, ..., x_d]$ a maximal ideal. Then the Bass–Quillen conjecture holds for the regular local ring

$$B = k[x_1, \dots, x_d]_m.$$

Proof. Set

$$B_0 := k[x_1, \dots, x_{d-1}]_{(f(x_1), x_2, \dots, x_{d-1})},$$

and consider the homomorphism $B_0[x_d] \longrightarrow B$. Note that the pair

$$(B_0[x_d, t_1, \dots, t_n] \longrightarrow B[t_1, \dots, t_n], x_d)$$

is an elementary Nisnevich cover.

Suppose M a finitely generated projective B-module. Now dim $B_{x_d} < d$, so by the induction hypothesis, M_{x_d} is extended from B_{x_d} , hence free. Now by Nisnevich descent, there exists a finitely generated projective $B_0[x_d,t_1,\ldots,t_n]$ -module M' such that

$$M \cong M' \otimes_{B_0[x_d,t_1,\ldots,t_n]} B[t_1,\ldots,t_n].$$

Observe that dim $B_0 < d$ as well. The inductive hypothesis thus implies that M' is free, whence so is M.

Reduction to the special case

Lemma (Nashier). There exists an elementary Nisnevich cover $(\phi: B \longrightarrow A, h)$ such that $B \cong C_m$ for

$$C = k[x_1, ..., x_d]$$
 and $m = (f(x_1), x_2, ..., x_d) \triangleleft C$

a maximal ideal.

Proof of Lindel's Theorem from Nashier's Lemma. By the induction hypothesis, since dim $A_{\phi(h)} < d$, the projective $A_{\phi(h)}$ -module $P_{\phi(h)}$ is free. By Nisnevich descent, there exists a finitely generated projective B-module P' such that

$$P' \otimes_R A \cong P$$
.

Our special case now applies, so P' is free, whence so is P.

Proof of Nashier's Lemma. Denote by $m_A \triangleleft A$ the maximal ideal, and choose a nonzero element $a \in m_A^2$. One may select⁷ a regular sequence a, x_2, \ldots, x_d and an element $z \in m_A$ such that $m_A = (z, x_2, \ldots, x_d)$.

In particular, the sub-k-algebra of A generated by $\{a, x_2, \ldots, x_d\}$ is a polynomial ring $k[a, x_2, \ldots, x_d] \subset A$. Let $C' \subset A$ denote the integral closure of $k[a, x_2, \ldots, x_d]$ in A. One notes that A

⁸ since
$$m_A \cap k[a, x_2, ..., x_d] = (a, x_2, ..., x_d)$$

$$m' := m_A \cap C'$$

is maximal in C'.

We now claim that $A = C'_{m'}$. This follows from Zariski's Main Theorem. The important thing to note is that the fraction fields $K(k[a, x_2, ..., x_d])$ and K(A) have the same transcendence degree over k, whence the extension

$$K(k[a, x_2, \dots, x_d]) \subset K(A)$$

is algebraic. Consequently, K(C') = K(A), and C' is finite over $k[a, x_2, ..., x_d]$, so Zariski's Main Theorem applies.

For any $s \in C'$, write $\overline{s} := s + m' \in C'/m'$. Since k is perfect, there exists $s \in C'$ such that C'/m' is the field $k(\overline{s})$. Let f denote the minimal polynomial of \overline{s} . Since $A = C'_{m'}$, the C'/m'-vector space $m'/(m')^2$ is generated by $\{\overline{z}, \overline{x}_1, \dots, \overline{x}_d\}$, whence

$$f(\overline{s}) = b_1 \overline{z} + b_2 \overline{x}_1 + \dots + b_d \overline{x}_d$$

with $b_1, \dots, b_d \in C'/m'$. Now replacing s with s + z if $b_1 = 0$, one ensures that

$$m' = (f(s), x_2, ..., x_d) + (m')^2.$$

Write $m', m'_2, \dots, m'_r \triangleleft C'$ for the maximal ideals that lie over

$$(a, x_2, ..., x_d) \triangleleft k[a, x_2, ..., x_d].$$

Choose $x_1 \in m'_2 \cap \cdots \cap m'_r$ such that

$$x_1 = s \mod (m')^2.$$

Replacing x_1 by $x_1 + a^t$ if necessary, one ensures that a is integral over $k[x_1, \ldots, x_d]$. The only maximal ideal of C' that contains $(a, f(x_1), x_2, \ldots, x_d)$ is m', and since $f(x_1) = f(s) \mod (m')^2$, it follows that

$$m' = (f(x_1), x_2, ..., x_d) + (m')^2,$$

whence $m' = (a, f(x_1), x_2, ..., x_d)$.

Now set

$$C := k[x_1, \dots, x_d],$$
 and $m = (f(x_1), x_2, \dots, x_d)$ and $B := C_m$.

Note that Nakayama's Lemma implies 10

$$A = C'_{m'} = B[a]_{(m,a)}.$$

Observe also that

$$A = B + aA$$
 and $B/(B \cap aA) = A/aA$.

Let $g(u) = u^n + c_{n-1}u^{n-1} + \dots + c_0$ be the minimal polynomial of a over C. Set

$$h := c_0 = -(c_1 + c_2 a + \dots + c_{n-1} a^{n-2} + a^{n-1})a.$$

⁹ In particular,

 $f(s) \in m' \quad \text{and} \quad f'(s) \notin m',$ and for any $y \in m'$,

$$f(s+y) = f(s) + f'(s)y \mod (m')^2$$
.

since $m_A \cap C = m$ and $m_A = (m, a)$

Our claim is now that the pair $(B \hookrightarrow A, h)$ is the desired elementary Nisnevich cover. To show that $B/hB \longrightarrow A/hA$ is an isomorphism, we must argue that

$$hB = hA \cap B$$
 and $A = B + hA$.

The first claim follows from the fact that $A = B[a]_{(m,a)}$ is flat as a B-module, and hence (since A is local) faithfully flat over B.

To prove the second claim, it suffices to show that

$$c_1 \notin m$$
.

For this, since $a \in m_A^2$ and since m_A is generated by m in A, there are elements $\mu_i, \nu_i \in C$ with $\mu_0, \mu_1 \in m$ and $\nu_0 \notin m$ such that

$$(v_0 + \dots + v_r a^r)a = \mu_0 + \dots + \mu_r a^r$$

Consequently, there is $h(u) = \alpha_0 + \dots + \alpha_r u^r \in C[u]$ such that h(a) = 0 but $\alpha_1 \notin m$, and since g divides h, it follows that $c_1 \notin m$.