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Introduction

Euler’s Gamma function is the analytic continuation of the Mellin
transform of the negative exponential function:

The Gamma function has no
zeroes, and its only poles are
simple poles at nonpositive
integers.

𝛤(𝑠) = ∫
+∞

0
𝑡𝑠 exp(−𝑡) 𝑑 log 𝑡.

This meromorphic function has profound arithmetic significance. For
instance, we have Riemann’s functional equation: if 𝜁 is the usual Riemann
zeta function, we may set The Riemann zeta function is

the analytic continuation of
∑𝑛≥1 𝑛

−𝑠.
𝛯(𝑠) ≔ (2𝜋𝑠)−1/2𝛤( 𝑠

2
) 𝜁(𝑠).

Then one has 𝛯(1 − 𝑠) = 𝛯(𝑠). So, in effect, the Gamma factor plays the
role of Euler factor at the infinite place.

Our guiding question is imprecise, but tantalising. Why should 𝛤 carry this arithmetic significance?
Why do factors that involve this ostensibly innocuous meromorphic function – whose definition lies
wholly in the domain of classical analysis – serve as a means to complete the analytic functions of number
theory? What about the 𝛤 function permits one to employ it to define the local factor of 𝜁 functions (and,
more generally, 𝐿 functions) at infinite places?

The purpose of this course is to attempt to answer this question by connecting this humble function
with a largely hypothetical object called the field with one element, F1. There is, of course, no field with
only one element, but this object is nevertheless meant to serve as a kind of kōan whose contemplation
leads to some appreciation of the analogous behaviour of function fields over finite fields and number
fields. In effect, F1 is to be conceived of as a finite field, and number rings are to be conceived of the
rings of functions on affine F1-varieties, and compactifying these varieties over F1 is to be interpreted as
the addition of some infinite primes. Our aim is to offer some attempt at a description of a precise form
algebraic geometry over F1 – particularly as proposed in the distinct but related approaches of James
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Borger and Alain Connes – that is sufficient to account for the 𝛤 factors corresponding to the infinite
places.

We will begin with a purely analytic discussion of the basic properties of the Gamma function and
the Mellin transform; in particular, we will encounter a number of interesting functions, and we will
prove Ramanujan’s Master Theorem. This much should be understandable to anyone with a basic un-
derstanding of real and complex analysis. Our first effort to develop a conceptual explanation of the
Gamma factors will then be Tate’s proof of the functional equations for Dedekind zeta functions and
Hecke 𝐿 functions. For this, some exposure to class field theory would be helpful. Deninger described
Serre’s Gamma factors of motivic 𝐿 functions in terms of regularized determinants and an arithmetic co-
homology theory; we will explain his results, and we will enrich his description by passing to Connes and
Consani’s description in terms of cyclic homology. This last clump of material is rather more involved,
and we will be inexorably lead into deeper bits of algebra.

Please note that this text contains many incomplete or sketched proofs. This is deliberate: the reader
is asked to supply these proofs as a means of coming to grips with the ideas herein.



1
The analytic picture

1.1 The Mellin transform

To define Euler’s 𝛤 function, we will employ an analytic tool – the multiplicative Fourier transform,
or, as it is more traditionally called, the Mellin transform. In effect, the Mellin transform acts as the
Fourier transform on the multiplicative topological group R>0 relative to the multiplicative Haar measure
𝑑 log 𝑡.

1.1.1 Notation. We will use the Landau symbols. Suppose 𝑎 a point of
some topological space, suppose 𝑔 ∶ 𝑉 ⧵ 𝑎 R>0 and 𝑓 ∶ 𝑉 ⧵ 𝑎 C
functions defined in a punctured neighborhood 𝑉 ⧵ 𝑎. Then we will write

Example. One has exp(𝑥) =
1 + 𝑥 + 𝑥2/2 +𝑂(𝑥3) as 𝑥 0.

Example. A function 𝑓 on
R>0 is bounded if and only if
𝑓(𝑥) = 𝑂(1) as 𝑥 +∞.

Example. If 𝑓 is analytic near
the origin, one has 𝑓(𝑧) =
𝑎0 + 𝑎1𝑧 + 𝑎2𝑧2 +⋯+ 𝑎𝑁𝑧𝑁 +
𝑂𝑁(|𝑧|𝑁+1) as 𝑧 0, where
𝑎0, 𝑎1,… , 𝑎𝑁 are the first𝑁
Taylor coefficients. Hence
Taylor expansions are a kind of
asymptotic expansion.

𝑓(𝑥) = 𝑂(𝑔(𝑥)) as 𝑥 𝑎

if and only if for some neighborhood 𝑈 of 𝑎 and some 𝐶 > 0, one has
|𝑓(𝑥)| ≤ 𝐶𝑔(𝑥) for every 𝑥 ∈ 𝑈. If the implicit constant 𝐶 is liable to
depend upon an auxiliary parameter 𝑡, then one writes 𝑓(𝑥) = 𝑂𝑡(𝑔(𝑥))
as 𝑥 𝑎.

One particular instance of this is the following. A sequence (𝜙𝑚)𝑚∈N
of functions on 𝑉 ⧵ 𝑎 provide an asymptotic expansion

𝑓(𝑥) ∼ ∑
𝑚∈N
𝑎𝑚𝜙𝑚(𝑥)

of 𝑓 near 𝑎 if and only if, for any𝑁 ∈ N, one has

𝑓(𝑥) =
𝑁−1
∑
𝑚=1
𝑎𝑚𝜙𝑚(𝑥) +𝑂𝑁(𝜙𝑁(𝑥)) as 𝑥 𝑎.
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Observe that no assumption about the convergence of the series ∑𝑚∈N 𝑎𝑚𝜙𝑚(𝑥)
is made.

We also write
Example. One has log𝑥 = 𝑜(𝑥)
as 𝑥 +∞.

Example. One has 7𝑥 = 𝑜(𝑥2) as
𝑥 +∞.

𝑓(𝑥) = 𝑜(𝑔(𝑥)) as 𝑥 𝑎

if and only if 𝑓(𝑥)/𝑔(𝑥) 0 as 𝑥 𝑎.
We follow the analytic number theorists and write

𝑓(𝑥) = 𝛺(𝑔(𝑥)) as 𝑥 𝑎

for the negation of the assertion 𝑓(𝑥) = 𝑜(𝑔(𝑥)) as 𝑥 𝑎; that is,
𝑓(𝑥) = 𝛺(𝑔(𝑥)) as 𝑥 𝑎 if and only if

lim sup
𝑥 𝑎

|𝑓(𝑥)|
𝑔(𝑥)
> 0.

In more detail, we write
Example. As a function on
R, one has sin𝑥 = 𝛺(1) as
𝑥 +∞, and even sin𝑥 =
𝛺±(1) as 𝑥 +∞.

Example. As a function on R,
one has 1 + sin𝑥 = 𝛺+(1) as
𝑥 +∞, but 1 + sin𝑥 ≠
𝛺−(1) as 𝑥 +∞.

𝑓(𝑥) = 𝛺+(𝑔(𝑥)) as 𝑥 𝑎

if and only if

lim sup
𝑥 𝑎

𝑓(𝑥)
𝑔(𝑥)
> 0,

we write
𝑓(𝑥) = 𝛺−(𝑔(𝑥)) as 𝑥 𝑎

if and only if

lim sup
𝑥 𝑎

𝑓(𝑥)
𝑔(𝑥)
< 0,

and we write
𝑓(𝑥) = 𝛺±(𝑔(𝑥)) as 𝑥 𝑎

if and only if both 𝑓(𝑥) = 𝛺+(𝑔(𝑥)) and 𝑓(𝑥) = 𝛺−(𝑔(𝑥)) as 𝑥 𝑎.
Let us also employ the following notation for strips in the complex

plane. When 𝛼,𝛽 ∈ R ∪ {−∞, +∞}, we write

⟨𝛼,𝛽⟩ ≔ {𝑠 ∈ C | ℜ(𝑠) ∈ [𝛼,𝛽]} ;

⟩𝛼,𝛽⟨ ≔ {𝑠 ∈ C | ℜ(𝑠) ∈ ]𝛼,𝛽[} .

We may also have occasion to use the rather odd-looking notations ⟨𝛼,𝛽⟨
and ⟩𝛼,𝛽⟩ as well.
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1.1.2 Definition. Suppose 𝑓 ∶ R>0 C a function that is absolutely
integrable on [0, 𝑟] for any 𝑟 ∈ R>0, and assume that Note that |𝑀{𝑓}(𝑠)| is domi-

nated by the sum

∫
1

0
|𝑓(𝑡)|𝑡ℜ(𝑠)−1 𝑑𝑡+∫

+∞

1
|𝑓(𝑡)|𝑡ℜ(𝑠)−1 𝑑𝑡,

and this in turn is dominated by

𝐶∫
1

0
𝑡ℜ(𝑠)−𝛼−1 𝑑𝑡+𝐶∫

+∞

1
𝑡ℜ(𝑠)−𝛽−1 𝑑𝑡.

The first summand converges
forℜ(𝑠) > 𝛼, and the second
converges forℜ(𝑠) < 𝛽.

𝑓(𝑡) = 𝑂(𝑡−𝛼) as 𝑡 0, 𝑡 > 0 and 𝑓(𝑡) = 𝑂(𝑡−𝛽) as 𝑡 +∞.

Then the integral

𝑀{𝑓}(𝑠) ≔ ∫
R>0
𝑡𝑠𝑓(𝑡) 𝑑 log 𝑡

converges on the strip ⟩𝛼,𝛽⟨ and it defines a holomorphic function there.
We call the holomorphic function𝑀{𝑓} the Mellin transform of 𝑓, and we
call ⟩𝛼,𝛽⟨ the strip of definition.

Here is a list of examples of Mellin transforms. The verifications are left to the motivated reader.

1.1.3 Example. If 𝑎 > 0, then consider the ray [𝑎, +∞[ and its characteristic function 𝜒[𝑎,+∞[. Then the
Mellin transform of 𝜒[𝑎,+∞[ is given by

𝑀 {𝜒[𝑎,+∞[} (𝑠) = −
𝑎𝑠

𝑠

with strip of definition 𝑠 ∈ ⟩−∞, −𝑎⟨.

1.1.4 Example. No polynomial admits a Mellin transform, because the integral never converges.

1.1.5 Example.The characteristic function of the open interval ]0, 1[ admits a Mellin transform; it is given
by

𝑀 {𝜒]0,1[} (𝑠) =
1
𝑠

with strip of definition 𝑠 ∈ ⟩0, +∞⟨.

1.1.6 Example.TheMellin transform of the function 𝑓(𝑥) = (1 + 𝑥)−1, is given by

𝑀{𝑓}(𝑠) = 𝜋 csc(𝜋𝑠)

with strip of definition 𝑠 ∈ ⟩0, 1⟨.

1.1.7 Example.TheMellin transform of the function 𝑓(𝑥) = (1 − 𝑥)−1 is given by

𝑀{𝑓}(𝑠) = 𝜋 cot(𝜋𝑠)

with strip of definition 𝑠 ∈ ⟩0, 1⟨.
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1.1.8 Example.TheMellin transform of the function 𝑓(𝑥) = tan−1(𝑥) is given by

𝑀{𝑓}(𝑠) = −𝜋
2
𝑠−1 sec (𝜋

2
𝑠)

with strip of definition 𝑠 ∈ ⟩−1, 0⟨.

1.1.9 Example.TheMellin transform of the function 𝑓(𝑥) = cot−1(𝑥) is given by

𝑀{𝑓}(𝑠) = 𝜋
2
𝑠−1 sec (𝜋

2
𝑠)

with strip of definition 𝑠 ∈ ⟩0, 1⟨.

1.1.10 Example.TheMellin transform of the function

𝑓(𝑥) = log |1 + 𝑥
1 − 𝑥
| ,

is given by

𝑀{𝑓}(𝑠) = 𝜋𝑠−1 tan (𝜋
2
𝑠) .

with strip of definition 𝑠 ∈ ⟩−1, 1⟨.

The Mellin transform enjoys some basic compatibilites with opera-
tions on functions that we explore now. Of course it goes without saying
that the Mellin transform is linear, but there are even better compatibili-
ties worth studying.

1.1.11 Lemma. Suppose
𝑓 ∶ R>0 C

a function with Mellin transform𝑀{𝑓}. These identities hold in the
appropriate strip of definition.
The proof of these claims – as
well as the task of finding the
appropriate strip of definition –
is left to the reader.

(i) If 𝑎 > 0 and 𝑔(𝑥) = 𝑓(𝑎𝑥), then𝑀{𝑔}(𝑠) = 𝑎−𝑠𝑀{𝑓}(𝑠).

(ii) If 𝑧 ∈ C and 𝑔(𝑥) = 𝑥𝑧𝑓(𝑥), then𝑀{𝑔}(𝑠) =𝑀{𝑓}(𝑧 + 𝑠).

(iii) If 𝑎 > 0 and 𝑔(𝑥) = 𝑓(𝑥𝑎), then𝑀{𝑔}(𝑠) = 𝑎−1𝑀{𝑓}(𝑎−1𝑠).

(iv) If 𝑎 < 0 and 𝑔(𝑥) = 𝑓(𝑥𝑎), then𝑀{𝑔}(𝑠) = −𝑎−1𝑀{𝑓}(𝑎−1𝑠).

(v) If 𝑔(𝑥) = 𝑓′(𝑥), then𝑀{𝑔}(𝑠) = (1 − 𝑠)𝑀{𝑓}(𝑠 − 1).

(vi) If 𝑔(𝑥) = log(𝑥)𝑓(𝑥), then𝑀{𝑔} = 𝑑𝑑𝑠𝑀{𝑓}(𝑠).
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1.1.12. Consider the topological group isomorphism exp∶ R R>0; if Here of course R is considered
additively and R>0 is considered
multiplicatively.

𝑓 ∶ R>0 C, then it is easy to see that

𝑀{𝑓}(−2𝜋𝑖𝑦) = 𝐹{𝑓 ∘ exp}(𝑦),

where 𝐹 is the Fourier transform.

1.1.13 Definition. If 𝜙 is a holomorphic function on a strip ⟩𝛼,𝛽⟨, then
for any 𝑥 ∈ R>0 and for any 𝑐 ∈ ]𝛼,𝛽[, the formula This contour integral is indepen-

dent of 𝑐 thanks to the Cauchy
integral formula.

𝑀−1{𝜙}(𝑥) ≔ 1
2𝜋𝑖
∫
𝑐+𝑖∞

𝑐−𝑖∞
𝜙(𝑠)𝑥−𝑠 𝑑𝑠,

defines a function𝑀−1{𝜙} ∶ R>0 C, called the inverse Mellin trans-
form of 𝜙.

1.1.14Theorem (Mellin inversion). Suppose 𝑓 ∶ R>0 C a function
with Mellin transform𝑀{𝑓}. Then one has We omit this proof.

𝑓 =𝑀−1{𝑀{𝑓}}.

A common situation is that the Mellin transform of a function admits
an analytic continuation to a meromorphic function on the complex
plane.

1.1.15 Notation. Let us write

−N ≔ {−1, −2,… }, and −N0 ≔ {0, −1,… }.

1.1.16 Proposition. Suppose 𝑓 ∶ R>0 C an infinitely differentiable
function of rapid decay at infinity, and assume that we have an asymptotic By rapid decay, we mean that

sup
𝑥∈R>0
|𝑥𝑚𝑓(𝑛)(𝑥)| < +∞

for every𝑚, 𝑛 ≥ 0.

expansion
𝑓(𝑥) ∼ ∑

𝑚∈N0

𝑎𝑚𝑥𝑚 as 𝑥 0.

Then𝑀{𝑓} admits a meromorphic continuation to the complex plane with
simple poles at 𝑠 = −𝑛 ∈ −N0 of residue

Res−𝑛𝑀{𝑓} = 𝑎𝑛.

Proof. One writes

𝑀{𝑓}(𝑠) ≔ ∫
R>0
𝑡𝑠𝑓(𝑡) 𝑑 log 𝑡 = ∫

1

0
𝑡𝑠𝑓(𝑡) 𝑑 log 𝑡 + ∫

+∞

1
𝑡𝑠𝑓(𝑡) 𝑑 log 𝑡,
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and one sees readily that the second summand is entire. The first sum-
mand can be rewritten, for any𝑁 ∈ N0, as

∫
1

0
𝑡𝑠𝑓(𝑡) 𝑑 log 𝑡 = ∫

1

0
𝑡𝑠 (𝑓(𝑡) −

𝑁−1
∑
𝑚=0
𝑎𝑚𝑡𝑚 ) 𝑑 log 𝑡 +

𝑁−1
∑
𝑚=0

𝑎𝑚
𝑚 + 𝑠
.

Here the first summand converges on the half-plane ⟩−𝑁, +∞⟨. This
integral is thus meromorphic on ⟩−𝑁, +∞⟨ with simple poles of residue
𝑎𝑚 at 𝑠 = −𝑚 ∈ {0, −1,… , −𝑁}. Since𝑁 is arbitrary, we conclude.

The same argument provides us with the following more general
statement:

1.1.17 Proposition. Suppose 𝑓 ∶ R>0 C an infinitely differentiable
function of rapid decay at infinity, and assume also that there is a sequence
(𝛼𝑚)𝑚∈N of complex numbers such that

lim
𝑚 +∞

ℜ(𝛼𝑚) = +∞,

and one has an asymptotic expansion

𝑓(𝑥) ∼ ∑
𝑚∈N
𝑎𝑚𝑥𝛼𝑚 as 𝑥 0.

Then𝑀{𝑓} admits a meromorphic continuation to the complex plane with
simple poles at 𝑠 = −𝛼𝑛 (𝑛 ∈ N) of residue

Res−𝛼𝑛𝑀{𝑓} = 𝑎𝑛.

1.2 Euler’s Gamma function

We are now prepared to introduce Euler’s function 𝛤.

1.2.1 Definition. If 𝑓(𝑥) = exp(−𝑥), then we define the Gamma function
as the Mellin transform of 𝑓:

𝛤(𝑠) ≔𝑀{𝑓}(𝑠) = ∫
R>0
𝑡𝑠 exp(−𝑡) 𝑑 log 𝑡

for 𝑠 ∈ ⟩0, +∞⟨.

1.2.2Theorem.The function 𝛤 admits an analytic continuation to a
meromorphic function on C with simple poles at 𝑠 = −𝑛 ∈ −N0 of residue

Figure 1.1: A graph of 𝛤(𝑠), for
𝑠 ∈ R.
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Res−𝑛 𝛤 =
(−1)𝑛

𝑛!
.

1.2.3 Example. One has

𝛤(1) = ∫
R>0
exp(−𝑡) 𝑑𝑡 = 1.

1.2.4 Proposition (Functional Equation I). For any 𝑠 > 0, one has

𝛤(1 + 𝑠) = 𝑠𝛤(𝑠),

and, consequently,

𝛤(𝑛 + 𝑠) = 𝛤(𝑠)
𝑛−1
∏
𝑘=0
(𝑘 + 𝑠)

Proof. This is immediate from Lm. 1.1.11(ii).

1.2.5 Example. If 𝑛 ≥ 0 is an integer, one has Gauss preferred the normaliza-
tion𝛱(𝑠) = 𝛤(1 + 𝑠), so that
𝛱(𝑛) = 𝑛!.𝛤(1 + 𝑛) = 𝑛!

1.2.6. One could instead have used Lm. 1.2.4 to analyticially continue 𝛤
from ⟩0, +∞⟨ strip-by-strip to C ⧵ −N0.

1.2.7 Definition. For 𝑢, 𝑣 ∈ ⟩0, +∞⟨, write

𝑓𝑣(𝑥) = 𝜒]0,1[(𝑥)(1 − 𝑥)𝑣−1;

one defines the Beta function as

𝐵(𝑢, 𝑣) ≔𝑀{𝑓𝑣}(𝑢) = ∫
1

0
𝑥𝑢−1(1 − 𝑥)𝑣−1 𝑑𝑥.

1.2.8 Proposition. For 𝑢, 𝑣 ∈ ⟩0, +∞⟨, one has

𝐵(𝑢, 𝑣) = 𝛤(𝑢)𝛤(𝑣)
𝛤(𝑢 + 𝑣)

.

Proof. One has

𝛤(𝑢)𝛤(𝑣) = ∬
R>0×R>0

exp(−𝑠 + 𝑡)𝑠𝑢−1𝑡𝑣−1 𝑑𝑢 𝑑𝑣,
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and the change of variables 𝑢 = 𝑥𝑦 and 𝑣 = 𝑥(1 − 𝑦) can then be
performed to obtain

𝛤(𝑢)𝛤(𝑣) = ∫
+∞

0
exp(−𝑥)𝑥𝑢+𝑣 𝑑 log𝑥 ⋅ ∫

1

0
𝑦𝑣−1(1 − 𝑦)𝑢−1 𝑑𝑦

= 𝛤(𝑢 + 𝑣)𝐵(𝑢, 𝑣),

as desired.

1.2.9 Proposition (Functional Equation II). If 𝑠 ∈ C ⧵ Z, then one has

𝛤(𝑠)𝛤(1 − 𝑠) = 𝐵(𝑠, 1 − 𝑠) = 𝜋 csc(𝜋𝑠).

Proof. The first equality is the previous result. It is clear that 𝛤(1 +
𝑠)𝛤(−𝑠) = −𝛤(𝑠)𝛤(1 − 𝑠) and 𝜋 csc(𝜋(1 + 𝑠)) = −𝜋 csc(𝜋𝑠), so it suf-
fices to verify the claim for 𝑠 ∈ ⟩0, 1⟩. In this strip, if 𝑓(𝑥) = (1 + 𝑥)−1,
then we have seen that

𝑀{𝑓}(𝑠) = 𝜋 csc(𝜋𝑠),

but on the other hand,

𝑀{𝑓}(𝑠) = ∫
1

0
𝑥𝑠−1(1 − 𝑥)−𝑠 𝑑𝑥 = 𝐵(𝑠, 1 − 𝑠),

as desired.

1.2.10 Example.We obtain computations directly from this: This offers an inefficient proof
that ∫

R
exp(−𝑡2) 𝑑𝑡 = √𝜋.

𝛤(1
2
) = √𝜋,

and, more generally, The value of the Gamma
function at half-integers is
of particular import, since it
appears in the formula for the
volume of an 𝑛-ball, which we
will discuss below.

𝛤(𝑚 + 1
2
) = (2𝑚 − 1)!!

2𝑚
√𝜋,

where the semifactorial is defined by the formula

𝑘!! =
⌈𝑘/2⌉−1
∏
𝑗=0
(𝑘 − 2𝑗),

so that

1.2.11 Definition. For any positive integer𝑚 and any 𝑠 ∈ C ⧵ −N0, define

𝛤𝑚(𝑠) ≔
𝑚𝑠𝑚!

𝑠(1 + 𝑠)⋯ (𝑚 + 𝑠)
= 𝑚𝑠

𝑠 (1 + 𝑠1)⋯(1 +
𝑠
𝑚)
.
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1.2.12Theorem (Euler Product Formula). For any 𝑠 ∈ C ⧵ −N0, we have

𝛤(𝑠) = lim
𝑚 +∞

𝛤𝑚(𝑠).

Proof. It is easy to see that 𝛤𝑚(1 + 𝑠) = 𝑠 (
𝑚−1
𝑚 )
1+𝑠 𝛤1+𝑚(𝑠); hence the

limit on the right satisfies the functional equation for 𝛤. We are thus
reduced to proving the claim for 𝑠 lying in the half plane ⟩0, +∞⟨. One
has

exp(−𝑡) = lim
𝑚 +∞

(1 − 𝑡
𝑚
)
𝑚
,

so the absolute convergence of both the integral and the limit permits us
to write

𝛤(𝑠) = lim
𝑚 +∞

∫
𝑚

0
(1 − 𝑡
𝑚
)
𝑚
𝑡𝑠 𝑑 log 𝑡

for 𝑠 ∈ ⟩0, +∞⟨. Integrating by parts, we obtain

∫
𝑚

0
(1 − 𝑡
𝑚
)
𝑚
𝑡𝑠 𝑑 log 𝑡 = 𝑚!

𝑠(𝑠 + 1)⋯ (𝑠 +𝑚 − 1)𝑚𝑚
∫
𝑚

0
𝑡𝑠+𝑚−1 𝑑𝑡 = 𝛤𝑚(𝑠),

as desired.

1.2.12.1 Corollary. In particular, for any 𝑠 ∈ C ⧵ −N0, we have

𝛤(𝑠) = 1
𝑠
∏
𝑛∈N

(1 + 1𝑛)
𝑠

1 + 𝑠𝑛
.

1.2.13 Notation. For𝑚 ∈ N0, we write ℎ𝑚 for the𝑚-th harmonic
number

ℎ𝑚 =
𝑚
∑
𝑘=1

1
𝑘
.

We let 𝛾 denote the Euler–Mascheroni constant, defined by

ℎ𝑁 = 𝛾 + log𝑁 +𝑂(
1
𝑁
)

for any positive integer𝑁.

1.2.14Theorem (Weierstraß Product Formula). For any element 𝑠 ∈
C ⧵ −N0, we have

𝛤(𝑠) = exp(−𝛾𝑠)
𝑠
∏
𝑛∈N

exp ( 𝑠𝑛)
1 + 𝑠𝑛
.
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Proof. One has

𝑚𝑠 = exp(𝑠 log𝑚) = exp(𝑠 log𝑚 − 𝑠
𝑚
∑
𝑛=1

1
𝑛
) ⋅ exp(𝑠

𝑚
∑
𝑛=1

1
𝑛
) ,

whence

𝛤𝑚(𝑠) =
1
𝑠
exp(𝑠 log𝑚 − 𝑠

𝑚
∑
𝑛=1

1
𝑛
)
𝑚
∏
𝑛=1

exp ( 𝑠𝑛)
1 + 𝑠𝑛
.

Letting𝑚 +∞, one obtains the Weierstraß Product Formula.

1.2.15 Proposition (Gauß Product Formula). One has

𝑚−1
∏
𝑘=0
𝛤(𝑠 + 𝑘
𝑚
) = (2𝜋)(𝑚−1)/2𝑚1/2−𝑚𝑠𝛤(𝑚𝑠).

1.2.15.1 Corollary.

𝑚−1
∏
𝑘=1
𝛤( 𝑘
𝑚
) = (2𝜋)

(𝑚−1)/2

√𝑚
.

The Psi function is the logarithmic derivative of the Gamma function.

1.2.16 Definition. One defines, for 𝑠 ∈ C ⧵ −N0

𝛹(𝑠) ≔ 𝑑
𝑑𝑠
log𝛤(𝑠) = 𝛤

′(𝑠)
𝛤(𝑠)
.

As a consequence of the Euler Product Formula, we deduce the
following.

1.2.17 Proposition. One has, for any 𝑠 ∈ C ⧵ −N0,

𝛹(𝑠) = lim
𝑚 +∞

(log𝑚 −
𝑚
∑
𝑘=0

1
𝑘 + 𝑠
)

On the other hand, the Weierstraß Product Formula implies the
following.

1.2.18 Proposition. One has, for any 𝑠 ∈ C ⧵ −N0,

𝛹(𝑠) = −𝛾 + ∑
𝑛∈N

𝑠 − 1
𝑛(𝑠 − 1 + 𝑛)

.
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1.2.19 Example. It is obvious that 𝛹(1) = −𝛾. More generally,

𝛹(1 +𝑚) = ℎ𝑚 − 𝛾.

1.2.20 Proposition (Functional Equation I). For any 𝑠 ∈ C ⧵ −N0, one
has

𝛹(1 + 𝑠) = 1
𝑠
+𝛹(𝑠).

1.2.21 Proposition (Functional Equation II). For any 𝑠 ∈ C ⧵ Z, one has

𝛹(𝑠) −𝛹(1 − 𝑠) = −𝜋 cot(𝜋𝑠).

Let 𝑣𝑛 be the volume of the unit 𝑛-ball. Then one has In the third equality, we’re
simply using the fact that

∫
𝑋
𝑓 𝑑𝜇 = ∫

+∞

0
𝜇 {𝑥 ∈ 𝑋 | 𝑓(𝑥) > 𝑡} 𝑑𝑡

for a positive function 𝑓 on a
measure space (𝑋, 𝜇).

𝜋𝑛/2 = (∫
R
exp(−𝑥2) 𝑑𝑥)

𝑛

= ∫
R𝑛
exp (−𝑥21 −⋯− 𝑥2𝑛) 𝑑𝑥1⋯ 𝑑𝑥𝑛

= ∫
1

0
𝑣𝑛 (− log 𝑡)

𝑛/2 𝑑𝑡

= 𝑣𝑛 ∫
+∞

0
𝑠𝑛/2 exp(−𝑠) 𝑑𝑠

= 𝑣𝑛𝛤(1 +
𝑛
2
) .

1.3 Ramanujan’s Master Theorem

1.3.1 Definition. Suppose 𝐴,𝑃, 𝛿 ∈ R are real numbers such that 𝐴 < 𝜋
and 0 < 𝛿 ≤ 1. The Hardy class𝐻(𝐴,𝑃, 𝛿) consists of holomorphic
functions 𝜙 on the half-plane ⟩−𝛿, +∞⟨ such that

𝜙(𝑠) = 𝑂(exp(−𝑃ℜ𝑠 +𝐴|ℑ𝑠|)).

1.3.2Theorem (Ramanujan Master). Suppose 𝜙 ∈ 𝐻(𝐴,𝑃, 𝛿). Then the
power series

𝑓(𝑡) = ∑
𝑚∈N0

(−𝑡)𝑚𝜙(𝑡)

converges for 𝑡 ∈ ]0, exp(𝑃)[ and defines a real analytic functon 𝑓 there.
The function 𝑓 extends to an analytic function on ]0, +∞[, and for any
𝑠 ∈ ⟩0, 𝛿⟨, we have

𝑀{𝑓}(𝑠) = 𝜋 csc(𝜋𝑠)𝜙(−𝑠).
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Proof. Write
𝛷(𝑡) ≔ ∑

𝑚∈N0

(−𝑡)𝑚𝜙(𝑚);

the growth conditions given ensure that 𝛷(𝑡) converges for 𝑡 ∈ ]0, exp(𝑃)[.
The Cauchy Residue Theorem gives

𝛷(𝑡) = 1
2𝜋𝑖
∫
𝑐+𝑖∞

𝑐−𝑖∞
𝜋 csc(𝜋𝑠)𝜙(−𝑠)𝑡−𝑠 𝑑𝑠

for any 𝑐 ∈ ]0, 𝛿[. The integral on the right converges uniformly on
compact subsets of ]0, +∞[, and now the claim now follows from the
Mellin inversion formula.

Writing 𝜆(𝑠) = 𝜙(𝑠)𝛤(1 + 𝑠), we obtain the formula

𝛤(𝑠)𝜆(−𝑠) = ∫
+∞

0
𝑡𝑠 ∑
𝑚∈N0

(−𝑡)𝑚

𝑚!
𝜆(𝑚) 𝑑 log 𝑡.

Much about this formula is interesting, but one way to think of it is to say
that the Mellin transform of a power series interpolates the coefficients of
that power series.

1.3.3 Example. Assume that 𝑓 admits an expansion of the form

𝑓(𝑡) = ∑
𝑚∈N0

𝜆(𝑚)
𝑚!
(−𝑡)𝑚.

Then one has
𝑀{𝑓}(𝑠) = 𝛤(𝑠)𝜆(−𝑠).

1.3.4 Example. Let’s write

𝑓(𝑡) ≔ 1
exp(𝑡) − 1

= ∑
𝑚∈N0

𝐵𝑚
𝑚!
𝑡𝑚−1

for 𝑡 > 0, where 𝐵𝑚 is the𝑚-th Bernoulli number, given by

𝐵𝑚 =
𝑚
∑
𝑘=0

1
1 + 𝑘

𝑘
∑
𝑛=0
(−1)𝑛(𝑘
𝑛
)𝑛𝑚.

Clearly 𝑓 is of rapid decay at infinity, and so one knows that the Mellin
transform𝑀{𝑓} is meromorphic on C with simple poles at 𝑠 = 1 −𝑚
(𝑚 ∈ N0) of residue

Res1−𝑚𝑀{𝑓} =
𝐵𝑚
𝑚!
.
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Since exp(𝑡) > 1 if 𝑡 > 0, we can write 𝑓(𝑡) as a geometric series

𝑓(𝑡) = ∑
𝑚∈N
exp(−𝑚𝑡),

so when we apply our rules for the Mellin transform, we obtain

𝑀{𝑓}(𝑠) = ∑
𝑚∈N
𝛤(𝑠)𝑚−𝑠 = 𝛤(𝑠)𝜁(𝑠),

where
𝜁(𝑠) = ∑

𝑚∈N
𝑚−𝑠.

Since we know that 𝛤 is nonvanishing and meromorphic on the plane with
simple poles of residue (−1)𝑚/𝑚! at 𝑠 = −𝑚 ∈ −N0, it follows that 𝜁(𝑠)
admits a meromorphic continuation to the plane with a unique simple pole
of residue 1 at 𝑠 = 1. Moreover, the Ramanujan Master Theorem gives, for
any −𝑚 ∈ −N0,

𝜁(−𝑚) = (−1)𝑚 𝐵𝑚+1
𝑚 + 1

1.3.5 Example.We can generalize the previous example in the following
manner. The Hurwitz zeta function

𝜁(𝑠, 𝑞) = ∑
𝑚∈N
(𝑚 + 𝑞)−𝑠.

Then if

𝑓(𝑡) = exp(−𝑞𝑡)
1 − exp(−𝑡)

− 1
𝑡
,

one has
𝑀{𝑓}(𝑠) = 𝛤(𝑠)𝜁(𝑠, 𝑞).

On the other hand, if 𝐵𝑚(𝑞) denotes the𝑚-th Bernoulli polynomial

𝐵𝑚(𝑞) =
𝑚
∑
𝑘=0
(𝑚
𝑘
)𝐵𝑚𝑞𝑚−𝑘,

then near the origin, one has

𝑡 exp(𝑞𝑡)
exp(𝑡) − 1

= ∑
𝑚∈N0

𝐵𝑚(𝑞)
𝑚!
𝑡𝑚,

whence for −𝑚 ∈ −N,

𝜁(1 −𝑚, 𝑞) = −𝐵𝑚(𝑞)
𝑚
.
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1.3.6 Definition. A Dirichlet series is a series

𝐿(𝑠) = ∑
𝑚∈N
𝑎𝑚𝑚−𝑠;

a generalized Dirichlet series is a series

𝐿(𝑠) = ∑
𝑚∈N
𝑎𝑚𝜆−𝑠𝑚

for some increasing sequence (𝜆𝑚) with 𝜆𝑚 +∞ that grows at least as
quickly as (𝑚𝑗) with 𝑗 > 0.

1.3.7Theorem. Any generalized Dirichlet series 𝐿(𝑠) = ∑𝑚∈N 𝑎𝑚 exp(−𝜆𝑚𝑠)
admits an abscissa of convergence 𝜎𝑐 with the property that 𝐿(𝑠) converges
if 𝑠 ∈ ⟩𝜎𝑐, +∞⟨, and 𝐿(𝑠) does not converge if 𝑠 ∈ ⟩−∞,𝜎𝑐⟨. Further-
more, if 𝑠0 ∈ ⟩𝜎𝑐, +∞⟨, then there is a neighbourhood of 𝑠0 on which 𝐿(𝑠)
converges uniformly.

1.3.8 Example. Suppose

𝐿(𝑠) = ∑
𝑚∈N
𝑎𝑚𝜆−𝑠𝑚

a generalized Dirichlet series. Now set, for 𝑡 > 0,

𝑓(𝑡) ≔ ∑
𝑚∈N
𝑎𝑚 exp(−𝜆𝑚𝑡).

Assume that 𝜙 has an asymptotic expansion

𝑓(𝑡) ∼
+∞
∑
𝑛=−1
𝑏𝑚𝑡𝑚 as 𝑡 0.

Then
𝑀{𝑓}(𝑠) = 𝛤(𝑠)𝐿(𝑠),

whence 𝐿(𝑠) admits a meromorphic continuation to the complex plane with
only one simple pole at 𝑠 = 1, and for any −𝑚 ∈ −N0,

𝐿(−𝑚) = (−1)𝑚𝑚!𝑎𝑚.

1.3.9 Example. A character

𝜒 ∶ (Z/𝑘)× C×,
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extends to Z/𝑘 by declaring 𝜒(𝑗) = 0 if 𝑗 is not a unit and then to Z via the
obvious quotient map. The resulting map

𝜒 ∶ Z C

is called a Dirichlet character.
One defines the Dirichlet 𝐿-series

𝐿(𝑠,𝜒) = ∑
𝑚∈N
𝜒(𝑚)𝑚−𝑠,

and one can follow the recipe above to write

𝑓(𝑡,𝜒) = ∑
𝑚∈N
𝜒(𝑚) exp(−𝑚𝑡).

Then
𝑀{𝑓(•,𝜒)}(𝑠) = 𝛤(𝑠)𝐿(𝑠,𝜒),

whence 𝐿(𝑠,𝜒) admits a meromorphic continuation to the complex plane
with only one simple pole at 𝑠 = 1, and for any −𝑚 ∈ −N,

𝐿(1 −𝑚,𝜒) = −
𝐵𝑚,𝜒
𝑚
,

where 𝐵𝑚,𝜒 is the generalized Bernoulli number, with

∑
𝑚∈N
𝜒(𝑚) 𝑡 exp(𝑚𝑡)
exp(𝑚𝑡) − 1

= ∑
𝑚∈N0

𝐵𝑚,𝜒
𝑚!
𝑡𝑚.

1.3.10 Example. Consider the Dirichlet series

𝐿(𝑠) = 𝐿(𝑠,𝜒4) = ∑
𝑚∈N
(−1)𝑚(2𝑚 − 1)−𝑠.

Then one has
𝑓(𝑡) = 1
2
sech 𝑡 = 1

2
∑
𝑚∈N0

𝐸𝑚
𝑚!
𝑡𝑚,

where 𝐸𝑚 is the𝑚-th Euler number. We thus obtain for any −𝑚 ∈ −N0,

𝐿(−𝑚) = 𝐸𝑚
2
.

1.3.11Theorem. Suppose 𝐿(𝑠) = ∑𝑚∈N 𝑎𝑚 exp(−𝜆𝑚𝑠). Let

𝐴(𝑡) = ∑
𝑚≤𝑡
𝑎𝑚.

Then for any 𝑠 ∈ ⟩max{0,𝜎𝑐}, +∞⟨, one has

𝑀{𝐹}(𝑠) = 𝐿(𝑠)
𝑠
,

where 𝐹(𝑡) = 𝐴(1/𝑡).
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1.4 Theta series

1.4.1 Definition. Write

𝜃(𝑧) ≔ ∑
𝑛∈Z
exp(𝑖𝜋𝑛2𝑧) = 1 + 2 ∑

𝑛∈N
exp(𝑖𝜋𝑛2𝑧).

This series converges in the upper half-plane H = {𝑧 ∈ C | ℑ(𝑧) > 0}, and
it defines an analytic function there, called Jacobi’s 𝜃 function.

Let us contemplate a suitably normalized version of the Mellin trans-
form of the function 𝑓(𝑥) = 12 (𝜃(𝑖𝑥) − 1): set

𝑍(𝑠) ≔𝑀{𝑓}(𝑠/2).

One sees easily that the Mellin transform of 𝑔𝑛(𝑥) = exp(−𝜋𝑛2𝑥) can be
computed as

𝑀{𝑔𝑛}(𝑠) = 𝜋−𝑠𝛤(𝑠)𝑛−2𝑠,

and absolute convergence permits us to obtain, for 𝑠 ∈ ⟩0, +∞⟨,

𝑀{∑
𝑛∈N
𝑔𝑛} (𝑠) = 𝜋−𝑠𝛤(𝑠)𝜁(2𝑠).

But of course 𝑓 = ∑𝑛∈N 𝑔𝑛, and so we conclude

1.4.2 Proposition. One has

𝑍(𝑠) = 𝜋−
𝑠
2 𝛤( 𝑠
2
) 𝜁(𝑠).

1.4.3Theorem (Poisson Summation). For any (complex-valued) Schwartz
function 𝜙 on R, one has

∑
𝑛∈Z
𝜙(𝑚) = ∑

𝑛∈Z
𝜙(𝑚).

1.4.3.1 Corollary (Functional equation).The Jacobi theta function
satisfies1 1 Here, (𝑧/𝑖)1/2 =

exp((1/2) log(𝑧/𝑖)), taking
the principal branch of the log.𝜃(−1

𝑧
) = (𝑧
𝑖
)
1/2
𝜃(𝑧).

Proof. Consider the function 𝜙(𝑡) ≔ exp(−𝜋𝑡2), and observe that it is its
own Fourier transform. Now for 𝑥 > 0, write

𝛾𝑥(𝑡) = 𝜙(√𝑥𝑡) = exp(−𝜋𝑥𝑡2),
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so that 𝛾𝑥(𝑛) = 𝑔𝑛(𝑥) in the notation above. Now

𝛾𝑥(𝑦) =
1
√𝑥
𝜙( 𝑦
√𝑥
) = 1
√𝑥
𝜙( 𝑦
√𝑥
) = 1
√𝑥
exp(−𝜋𝑦

2

𝑥
) = 1
√𝑥
𝛾𝑥 (
𝑦
𝑥
) .

Now we apply Poisson Summation to conclude.

1.4.3.2 Corollary (Functional equation). One has

𝑍(𝑠) = 𝑍(1 − 𝑠).

Proof. Using the functional equation for 𝜃, we obtain

𝑓(𝑥) = 𝑥−1/2𝑓( 1
𝑥
) + 1
2
𝑥−1/2 − 1

2
,

and in the same manner as above, one may show that the Mellin trans-
Exercise. Check that the Mellin
transform behaves as described.

form of the function on the right is𝑀{𝑓}(1/2 − 𝑠).

Let’s use the same strategy to give a functional equation for the 𝐿-
function of a nontrivial, primitive Dirichlet character 𝜒 of modulus
𝑘.

1.4.4 Definition. The exponent of 𝜒 is the quantity 𝜖 ∈ {0, 1} with the
property that

𝜒(−1) = (−1)𝜖𝜒(1).

Then the corresponding theta series is When𝑚 = 𝜖 = 0, we declare
𝑚𝜖 = 0.

𝜃(𝜒, 𝑧) = ∑
𝑚∈Z
𝜒(𝑚)𝑚𝜖 exp(𝑖𝜋𝑚

2

𝑘
𝑧) .

Let us run the same program as above. We study the Mellin transform
of the function

𝑓(𝜒,𝑥) = 1
2
𝜃(𝜒, 𝑖𝑥),

and with the same argument as above, we obtain the following.

1.4.5 Proposition. One has

𝑀{𝑓(𝜒, •)} ( 𝑠 + 𝜖
2
) = 2( 𝑘
𝜋
)
(𝑠+𝜖)/2
𝐿(𝜒, 𝑠)𝛤( 𝑠 + 𝜖

2
)
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1.4.6 Definition. We define the completed 𝐿-function of 𝜒:

𝛬(𝜒, 𝑠) ≔ ( 𝑘
𝜋
)
𝑠/2
𝐿(𝜒, 𝑠)𝛤( 𝑠 + 𝜖

2
)

We want to extract a functional equation for 𝛬(𝜒, 𝑠) from a functional
equation for the theta series. This latter functional equation involves an
auxiliary term called the Gauß sum.

1.4.7 Definition. The Gauß sum for 𝜒 is given by

𝜏(𝜒) =
𝑘−1
∑
𝑚=0
𝜒(𝑚) exp (𝑖2𝜋𝑚

𝑘
) .

One has

|𝜏(𝜒)|2 =
𝑘−1
∑
𝑚=0

𝑘−1
∑
𝑛=0
𝜒(𝑛) exp(𝑖2𝜋𝑚𝑛/𝑘) exp(−𝑖2𝜋𝑚/𝑘)

=
𝑘−1
∑
𝑛=0
𝜒(𝑛)
𝑘−1
∑
𝑚=0
exp(𝑖2𝜋𝑚(𝑛 − 1)/𝑘)

= 𝜒(1)𝑚 = 𝑚.

with this in mind, here is our functional equation for the theta function.

1.4.8 Proposition (Functional equation). One has

𝜃(𝜒, −1
𝑧
) =
𝜏(𝜒)
𝑖𝜖√𝑚
(𝑧
𝑖
)
𝜖+1/2
𝜃 (𝜒, 𝑧) .

1.4.8.1 Corollary (Functional equation). One has

𝛬(𝜒, 𝑠) =
𝜏(𝜒)
𝑖𝜖√𝑚
𝛬(𝜒, 1 − 𝑠).

We have a higher-dimensional variant of all this as well.

1.4.9 Notation. For any finite Z/2-set 𝑆, and denote by 𝜎 the nontrivial
involution. We will abuse notation and write 𝜎 also for complex conjuga-
tion. We form the C-vector space

C𝑆 ≔ Map(𝑆,C)
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with basis 𝑆, and we regard C𝑆 as an algebra under pointwise addition
and multiplication.

For 𝑧 ∈ C𝑆, we write

tr(𝑧) ≔ ∑
𝑠∈𝑆
𝑧(𝑠) and𝑁(𝑧) ≔ ∏

𝑠∈𝑆
𝑧(𝑠).

There is an action of Z/2 given by conjugation: 𝑧 𝜎 ∘ 𝑧 ∘ 𝜎, and we
may identify the R-algebraMap(𝑆,R) with the fixed point subalgebra for
this action:

Map(𝑆,R) ≅ R𝑆 ≔ Map(𝑆,C)Z/2 ⊆ Map(𝑆,C).

This entitles us to speak of the upper half-space

H𝑆 ≔ {𝑧 ∈ C𝑆 | 𝑧 = 𝑧 ∘ 𝜎 and 1
2𝑖
(𝑧 − 𝜎 ∘ 𝑧 ∘ 𝜎) > 0} .

1.4.10 Example. A standard example of a suitable Z/2-set 𝑆 is the set
Hom(𝐾,C) for a number field 𝐾, with the obvious Galois action. Then one
has isomorphisms

CHom(𝐾,C) ≅ 𝐾 ⊗Q C and RHom(𝐾,C) ≅ 𝐾 ⊗Q R.

1.4.11 Notation. There is also a hermitian form

(𝑧,𝑤) ≔ tr(𝑧 ⋅ (𝜎 ∘𝑤)) = ∑
𝑠∈𝑆
𝑧(𝑠) ⋅ 𝜎(𝑤(𝑠)),

which is invariant under the action of Z/2. This restricts to an inner
product (•, •) on R𝑆. Let 𝜇 denote the Haar meeasure relative to that
metric.

1.4.12 Definition. For every Z-structure𝑊 ⊂ R𝑆, we define the theta
series

𝜃𝑊(𝑧) = ∑
𝑤∈𝑊
exp {𝑖𝜋(𝑤𝑧,𝑤)} .

This converges absolutely and uniformly on all compacta in H𝑆.
More generally, suppose 𝑎, 𝑏 ∈ R𝑆, and suppose 𝑝 ∶ 𝑆 N0 such that
𝑝 ⋅ (𝑝 ∘ 𝜎) = 0. Set

𝜃𝑝𝑊(𝑎, 𝑏, 𝑧) = ∑
𝑤∈𝑊
𝑁 ((𝑎 +𝑤)𝑝) exp {𝑖𝜋 (((𝑎 +𝑤)𝑧, 𝑎 +𝑤) + 2(𝑏,𝑤))} .
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We now contemplate Schwartz functions 𝜙 ∶ R𝑆 C and their
Fourier transforms

𝜙(𝑦) = ∫
R𝑆
𝑓(𝑥) exp(−𝑖2𝜋(𝑥,𝑦)) 𝑑𝜇,

and we see much of the good behaviour we’ve become accustomed to.

1.4.13 Example.The function 𝜙(𝑥) = exp(−𝜋(𝑥,𝑥)) is its own Fourier
transform.

To prove a functional equation for 𝜃𝑊, we will need a Poisson Summa-
tion formula.

1.4.14 Proposition (Poisson Summation). If𝑊 ⊂ R𝑆 is a Z-structure,
then let

𝑊∨ ≔ {𝑣 ∈ R𝑆 | ∀𝑤 ∈𝑊, (𝑤, 𝑣) ∈ Z}.

Then for any Schwartz function 𝜙 ∶ R𝑆 C, one has If𝑊 is the Z-span of vectors
𝑤1,… ,𝑤𝑛, then covol(𝑊) ≔
| det(𝑤1,… ,𝑤𝑛)|.∑

𝑤∈𝑊
𝜙(𝑤) = covol(𝑊)−1 ∑

𝑣∈𝑊∨
𝜙(𝑣).

1.4.14.1 Corollary (Functional equation). One has

𝜃𝑊 (−
1
𝑧
) =
√(𝑁(𝑧/𝑖))
covol(𝑊)

𝜃𝑊∨ (𝑧).

More generally, one has

𝜃𝑝𝑊 (𝑎, 𝑏, −
1
𝑧
) = (𝑖tr(𝑝) exp(𝑖2𝜋(𝑎, 𝑏)) covol(𝑊))−1𝑁 ((𝑧/𝑖)𝑝+1/2) 𝜃𝑝𝑊∨ (−𝑏, 𝑎, 𝑧) .

1.4.15 Notation. We define

(R𝑆)
>0
≔ {𝑥 ∈ R𝑆 | 𝑥 = 𝑥 ∘ 𝜎 and 𝑥 > 0} .

One has a topological isomorphism

𝜙 ∶ (R𝑆)
>0
∼ ∏
𝑝∈𝑆/𝐶2

R>0

defined by

𝑥 (∏
𝑠∈𝑝
𝑥(𝑠))
𝑝∈𝑆/𝐶2

.
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(We say that 𝑝 is real if it lies in the image of 𝑆𝐶2 ; otherwise, we call it
complex.) One now pulls back the Haar measure to obtain

𝑑 log𝑥 ≔ 𝜙⋆ (∏
𝑠∈𝑆
𝑑 log𝑥(𝑠)) .

1.4.16 Definition. The Mellin transform corresponding to the 𝐶2-set 𝑆 of
a function 𝑓 ∶ (R𝑆)

>0
C𝑆 is the function

𝑀𝑆{𝑓}(𝑠) ≔ ∫
𝑥∈(R𝑆)>0

𝑁(𝑓(𝑥)𝑥𝑠) 𝑑 log𝑥.

In particular, if 𝑓(𝑥) = 𝑒𝑥𝑝(−𝑥), then the higher dimensional gamma
function is given by 𝛤𝑆 ≔𝑀{𝑓}(𝑠).

1.4.17 Proposition. One obtains

𝛤𝑆(𝑠) = ∏
𝑝∈𝑆/𝐶2

𝛤𝑝(𝑠𝑝),

where

𝛤𝑝(𝑠𝑝) ≔
{
{
{

𝛤(𝑠𝑝) if 𝑝 is real;

21−tr(𝑠𝑝)𝛤(tr(𝑠𝑝)) if 𝑝 is complex.

1.4.18 Definition. At last, we define the 𝐿-function of the 𝐶2-set 𝑆 by

𝐿𝑆(𝑠) ≔ 𝑁(𝜋−𝑠/2)𝛤𝑆(𝑠/2).

Using the proposition above, we find that

𝐿𝑆(𝑠) = ∏
𝑝∈𝑆/𝐶2

𝐿𝑝(𝑠𝑝),

where

𝐿𝑝(𝑠𝑝) =
{
{
{

𝜋−𝑠𝑝/2𝛤(𝑠𝑝/2) if 𝑝 is real;

2(2𝜋)− tr(𝑠𝑝)/2𝛤(tr(𝑠𝑝)/2) if 𝑝 is complex.

As a matter of notation, assume that 𝑛 ≔ #𝑆, and

𝑆 = 𝑟1(𝐶2/𝐶2) ∪ 𝑟2(𝐶2/𝑒),

so that 𝑛 = 𝑟1 + 2𝑟2. We may apply any function of C𝑆 to a single complex
number 𝑠 by writing 𝑓(𝑠) ≔ 𝑓(const𝑠). So, for instance,

𝛤𝑆(𝑠) = 2(1−2𝑠)𝑟2𝛤(𝑠)𝑟1𝛤(2𝑠)𝑟2

𝐿𝑆(𝑠) = 𝜋−𝑛𝑠/2𝛤𝑆(𝑠/2)
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In particular, for the two 𝐶2-orbits,

𝐿R(𝑠) ≔ 𝐿𝐶2/𝐶2 (𝑠) = 𝜋
−𝑠/2𝛤(𝑠/2)

𝐿C(𝑠) ≔ 𝐿𝐶2/𝑒(𝑠) = 2(2𝜋)
−𝑠𝛤(𝑠),

and one has
𝐿𝑆(𝑠) = 𝐿R(𝑠)𝑟1𝐿C(𝑠)𝑟2 .

Using what we have already seen about the gamma function, we obtain
the following directly:

1.4.19Theorem. One has

𝐿R(1) = 1;

𝐿C(1) = 𝜋−1;

𝐿R(2 + 𝑠) =
𝑠
2𝜋
𝐿R(𝑠);

𝐿C(1 + 𝑠) =
𝑠
2𝜋
𝐿C(𝑠);

𝐿R(1 − 𝑠)𝐿R(1 + 𝑠) = sec (
𝜋
2
𝑠) ;

𝐿C(1 − 𝑠)𝐿C(𝑠) = 2 csc(𝜋𝑠);

𝐿𝑆(𝑠) = cos (𝜋
𝑠
2
)
𝑟1+𝑟2
sin (𝜋 𝑠
2
)
𝑟2
𝐿C(𝑠)𝑛𝐿𝑆(1 − 𝑠).

Now we apply this machinery to the 𝐶2-set 𝑆 = Hom(𝐾,C) for a
number field 𝐾 of degree 𝑛 over Q. Then R𝑆 is the Minkowski space, for
which we have a selected isomorphism R𝑆 ≅ 𝐾 ⊗Q R. Note that if 𝑎◁𝑂𝐾,
then 𝑎 is a Z-structure on R𝑆 with covolume

covol(𝑎) = √𝑑𝑎,

where 𝑑𝑎 = 𝑁(𝑎)2|𝑑𝐾| is the absolute value of the discriminant. Observe
that if 𝑥 ∈ 𝐾×, then

𝑁((𝑥)) = |𝑁(𝑥)|.

1.4.20 Definition. The Dedekind zeta function of 𝐾 is given by

𝜁𝐾(𝑠) ≔ ∑
0≠𝑎◁𝑂𝐾
𝑁(𝑎)−𝑠,

where𝑁(𝑎) ≔ #(𝑂𝐾/𝑎). This series converges on ⟩1, +∞⟨; moreover, one
has

𝜁𝐾(𝑠) = ∏
0≠𝑝∈Spec𝑂𝐾

(1 −𝑁(𝑝)−𝑠)−1.
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For each ideal class 𝛷 ∈ Cl(𝐾), one may define a partial zeta function

𝜁(𝛷, 𝑠) ≔ ∑
𝑎◁𝑂𝐾, 𝑎∈𝛷

𝑁(𝑎)−𝑠,

so that
𝜁𝐾(𝑠) = ∑

𝛷∈Cl(𝐾)
𝜁(𝛷, 𝑠).

In effect, we are going to find functional equations for each partial zeta
function, and then we are going to assemble these.

1.4.21 Notation. We write

𝑍(𝛷, 𝑠) ≔ |𝑑𝐾|𝑠/2𝐿𝑋(𝑠)𝜁(𝛷, 𝑠)

To express 𝑍(𝛷, 𝑠) as a suitable Mellin transform, we need to cut out
the norm-one hypersurface

S𝑆 ≔ {𝑥 ∈ (R𝑆)
>0
|𝑁(𝑥) = 1},

so that (R𝑆)
>0
≅ S𝑆 × R>0. Of course 𝑂×𝐾/𝜇𝐾 ⊂ S𝑆. We take 𝑑×𝑥 to be

the unique Haar measure on S𝑆 such that

𝑑 log𝑥 = 𝑑×𝑥 × 𝑑 log 𝑡.

By the Dirichlet unit theorem,

log(𝑂×𝐾/𝜇𝐾) ⊂ {𝑥 ∈ R𝑆 | 𝑥 = 𝑥 ∘ 𝜎 and tr(𝑥) = 0}

is a Z-structure. Let 𝐹 be the inverse image of any fundamental domain of
2 log(𝑂×𝐾/𝜇𝐾).

1.4.22 Exercise. The domain 𝐹 we constructed has volume

vol(𝐹) = 2𝑟1+𝑟2−1𝑅𝐾, .

where

𝑅𝐾 ≔
covol(log(𝑂×𝐾/𝜇𝐾))
√𝑟1 + 𝑟2

is the quantity known as Dirichlet regulator.
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1.4.23Theorem.Write

𝑓𝐹(𝑎, 𝑡) ≔
1
#𝜇𝐾
∫
𝐹
𝜃𝑎(𝑖𝑥(𝑡/𝑑𝑎)1/𝑛) 𝑑×𝑥 −

vol(𝐹)
#𝜇𝐾
.

Then 𝑍(𝛷, 𝑠) =𝑀{𝑓}(𝑠/2).

Proof. Let 𝑅 denote the quotient of the action of 𝑂×𝐾 upon the ideal 𝑎,
and form the sum over representatives

𝑔(𝑥) = ∑
𝑟∈𝑅
exp(−𝜋(𝑟𝑥/𝑑1/𝑛𝑎 ,𝑥)).

Then one has the following Exercise!

|𝑑𝐾|𝑠𝜋−𝑛𝑠𝛤𝑋(𝑠)𝜁(𝛷, 2𝑠) = ∫
(R𝑆)>0
𝑔(𝑥)𝑁(𝑥)𝑠 𝑑 log𝑥.

Consequently, we obtain

𝑍(𝛷, 2𝑠) = ∫
R>0
{∫

S𝑆
∑
𝑟∈𝑅
exp(−𝜋(𝑟𝑥(𝑡/𝑑𝑎)1/𝑛,𝑥)) 𝑑×𝑥} 𝑡𝑠 𝑑 log 𝑡.

We’d like to connect this to the theta series, but this involves a sum over
representatives of 𝑅 rather than a sum over 𝑎 itself. So:

∫
S𝑆
∑
𝑟∈𝑅
exp(−𝜋(𝑟𝑥(𝑡/𝑑𝑎)1/𝑛,𝑥)) 𝑑×𝑥 = ∑

𝜂∈|𝑂×𝐾|
∫
𝜂2𝐹
∑
𝑟∈𝑅
exp(−𝜋(𝑟𝑥(𝑡/𝑑𝑎)1/𝑛,𝑥)) 𝑑×𝑥

= 1
#𝜇𝐾
∑
𝜂∈𝑂×𝐾

∫
𝜂2𝐹
∑
𝑟∈𝑅
exp(−𝜋(𝑟𝑥(𝑡/𝑑𝑎)1/𝑛,𝑥)) 𝑑×𝑥

= 1
#𝜇𝐾
∫
𝜂2𝐹
∑
𝜂∈𝑂×𝐾

∑
𝑟∈𝑅
exp(−𝜋(𝑟𝑥(𝑡/𝑑𝑎)1/𝑛,𝑥)) 𝑑×𝑥

= 1
#𝜇𝐾
∫
𝜂2𝐹
{𝜃𝑎(𝑖𝑥(𝑡/𝑑𝑎)1/𝑛) − 1} 𝑑×𝑥,

as desired.

1.4.24Theorem.The function 𝑍(𝛷, 𝑠) admits a meromorphic continuation
to C with simple poles at 0 and 1 with

Res0 𝑍(𝛷, 𝑠) = −
2𝑟1+𝑟2
#𝜇𝐾
𝑅𝐾 and Res1 𝑍(𝛷, 𝑠) =

2𝑟1+𝑟2
#𝜇𝐾
𝑅𝐾.

Furthermore, it satisfies the functional equation

𝑍(𝛷, 𝑠) = 𝑍(𝛷 ⊗ 𝜔, 1 − 𝑠),
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where 𝜔 is the codifferent ideal

𝜔 = {𝑥 ∈ 𝐾 | tr𝐾|Q(𝑥𝑂𝐾) ⊆ Z}.

Proof. In order to employ the functional equation for our 𝜃-function, the
first task is to sort out what the dual lattice to 𝑎 is. Write 𝑏 = 𝑎−1 ⊗ 𝜔, so
that 𝑏 = {𝑥 ∈ R𝑆 | 𝑥𝑎 ∈ 𝜔}. One notes that

Exercise. Show that 𝑑𝑏 = 1/𝑑𝑎.
𝑎∨ = {𝑥 ∈ R𝑆 | tr(𝑥𝑎) ⊆ Z}

= {𝑥 ∈ R𝑆 | ∀𝑟 ∈ 𝑎, tr𝐾|Q(𝑥𝑟𝑂𝐾) ⊆ Z}

= {𝑥 ∈ R𝑆 | 𝑥𝑎 ∈ 𝜔}

= 𝑏.

Note also that 𝜃𝑎∨ = 𝜃𝑎∨ , whence

𝑓𝐹(𝑎,
1
𝑡
) = 1
#𝜇𝐾
∫
𝐹
𝜃𝑎(𝑖𝑥(𝑡𝑑𝑎)−1/𝑛) 𝑑𝑡𝑖𝑚𝑒𝑠𝑥

= 1
#𝜇𝐾
(𝑡𝑑𝑎)1/2

covol(𝑎)
∫
𝐹−1
𝜃𝑏(𝑖𝑥(𝑡𝑑𝑎)1/𝑛) 𝑑×𝑥

= 𝑡
1/2

#𝜇𝐾
∫
𝐹−1
𝜃𝑏(𝑖𝑥(𝑡/𝑑𝑏)1/𝑛) 𝑑×𝑥

= 𝑡1/2𝑓𝐹−1 (𝑏, 𝑡).

Now the usual Mellin transform argument completes the proof.

1.4.25 Definition. The completed zeta function of 𝐾 is given by

𝑍𝐾(𝑠) ≔ |𝑑𝐾|𝑠/2𝐿𝑋(𝑠)𝜁𝐾(𝑠)

1.4.26Theorem.The function 𝑍𝐾(𝑠) admits a meromorphic continuation
to C with simple poles at 0 and 1 with

Res0 𝑍(𝛷, 𝑠) = −
2𝑟1+𝑟2#Cl(𝐾)
#𝜇𝐾

𝑅𝐾 and Res1 𝑍(𝛷, 𝑠) =
2𝑟1+𝑟2#Cl(𝐾)
#𝜇𝐾

𝑅𝐾,

Furthermore, it satisfies the functional equation

𝑍𝐾(𝑠) = 𝑍𝐾(1 − 𝑠).

1.5 Pontryagin duality and Fourier analysis
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Before we go into details about Tate’s thesis, it’s good to have a crash
course on locally compact abelian (LCA) groups and Pontryagin duality.

1.5.1 Example. Here are some LCA groups.

• finite abelian groups – i.e., finite direct sums of cyclic groups Z/𝑝𝑣 – with
the discrete topology

• Z with the discrete topology

• R with the usual topology

• any finite dimensional R-vector space – these are called vector groups

• Q with the discrete topology (but not the subspace topology!)

• A closed subgroup of an LCA group is LCA.

• A quotient of an LCA group is LCA.

• The circle T = R/Z is LCA.

• The adic circle T = Q/Z is LCA.

• Finite products and coproducts of LCA groups exist and coincide; we
write ⊕ for the common operation. In particular, LCA is an additive
category.

• If {𝐴𝛼}𝛼∈𝛬 is any collection of LCA groups, then the product

∏
𝛼∈𝛬
𝐴𝛼

is LCA.

• The limit of any diagram of continuous homomorphisms of LCA groups
is LCA.

• If 𝛷 is the poset of natural numbers ordered by divisibility, then we
obtain

Ẑ ≔ lim
𝑚∈𝛷op

Z/𝑚;

we can look 𝑝-typically as well:

Z𝑝 ≔ lim
𝑛∈Nop
0

Z/𝑝𝑛.

These are rings. Exercise. Characterise all
compact hausdorff rings.
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• One has a topological isomorphism

Ẑ ≅ ∏
𝑝∈𝛱

Z𝑝.

• We can also form
Ẑ× ≔ lim

𝑚∈𝛷op
(Z/𝑚)×;

we can look 𝑝-typically as well:

Z×𝑝 ≔ lim
𝑛∈Nop
0

(Z/𝑝𝑛)×.

• We have the solenoid
S ≔ lim
𝑚∈𝛷op

R/𝑚Z

and the 𝑝-solenoid
S𝑝 ≔ lim

𝑛∈Nop
0

R/𝑝𝑛Z.

• One has a topological isomorphism

S𝑝 ≅ (R × Z𝑝)/Z.

• The filtered colimit of any diagram of open continuous homomorphisms
of LCA groups is LCA.

• We have the finite adèles

Afin ≔ colim𝑛∈𝛷 𝑛−1Ẑ.

and the 𝑝-adics
Q𝑝 ≔ colim𝑛∈N0 𝑝

−𝑛Z𝑝.

• The adèles are given by
A ≔ R ⊕Afin.

• One has topological isomorphisms

Q/Z ≅ colim𝑚∈𝛷 Z/𝑚

and
Q𝑝/Z𝑝 ≅ colim𝑛∈N0 Z/𝑝𝑛,

both of which are discrete.
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• One has topological isomorphisms

S ≅ A/Q.

S𝑝 ≅ (R ⊕Q𝑝)/Z[1/𝑝].

• If {𝐴𝛼}𝛼∈𝛬 is any collection of LCA groups, then the coproduct

∐
𝛼∈𝛬
𝐴𝛼 = colim𝑆∈ℱ(𝛬)⨁

𝛼∈𝑆
𝐴𝛼,

where ℱ(𝛬) is the filtered poset of finite subsets of 𝛬, is LCA.Warning:
the natural map∐𝛼∈𝛬 𝐴𝛼 ∏𝛼∈𝛬 𝐴𝛼 is continuous, and it is a
set-theoretic inclusion, but it is not the inclusion of a subspace!

• Assume {𝐴𝛼}𝛼∈𝛬 is any collection of LCA groups, 𝐽∞ ⊂ 𝛬 some finite
subset, and 𝐾𝛽 ⊆ 𝐴𝛽 a compact subgroup for each 𝛽 ∈ 𝛬 − 𝐽∞. Then the
restricted product

{𝐾𝛽}∏∐
𝛼∈𝛬
𝐴𝛼 ≔ colim𝑆∈ℱ(𝛬,𝐽∞) (∏

𝛼∈𝑆
𝐴𝛼 × ∏
𝛽∈𝛬−𝑆
𝐾𝛽) ,

where ℱ(𝛬, 𝐽∞) is the filtered poset of finite subsets of 𝛬 that contain
𝐽∞, is LCA. This is also the sum

{𝐾𝛽}∏∐
𝛼∈𝛬
𝐴𝛼 ≅ ⨁
𝛼∈𝐽∞

𝐴𝛼 ⊕(( ∏
𝛽∈𝛬−𝐽∞

𝐴𝛽)×(∏𝛽∈𝛬−𝐽∞ (𝐴𝛽/𝐾𝛽))
( ∐
𝛽∈𝛬−𝐽∞

(𝐴𝛽/𝐾𝛽))) .

Second warning: the natural map {𝐾𝛽}∏∐𝛼∈𝛬 𝐴𝛼 ∏𝛼∈𝛬 𝐴𝛼 is con-
tinuous, and it is a set-theoretic inclusion, but it is not the inclusion
of a subspace!

• One has topological isomorphisms

Afin ≅
{Z𝑝}∏∐
𝑝∈𝛱

Q𝑝

and
A ≅ {OQ𝑣 }𝑣 finite∏∐

𝑣
Q𝑣,

where the restricted product is over the set of places, 𝐽∞ is the set of
infinite places, and OQ𝑣 ⊂ Q𝑣 is the ring of integers.
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• More generally, for any number field 𝐾, one defines

A𝐾 ≅
{O𝐾𝑣 }𝑣 finite∏∐

𝑣
𝐾𝑣,

where 𝐽∞ is the set of infinite places.

• The multiplicative from of this are the idèles

I𝐾 ≅
{O×𝐾𝑣 }𝑣 finite∏∐

𝑣
𝐾×𝑣 .

Warning: the natural map I𝐾 A𝐾 is continuous, and it is a set-
theoretic inclusion, but it is not the inclusion of a subspace!This is
because multiplicative inverse on the suitable subspace of the adèles may
not be continuous; we can repair this, however, and we can see that the
inclusion I𝐾 A𝐾 ×A𝐾 given by

𝑥 (𝑥,𝑥−1)

is the inclusion of a subspace.

• One has a topological isomorphism

IQ ≅ Q× ⊕R>0 ⊕ Ẑ×.

• If 𝐾 is a number field, then the 𝐾-solenoid is

S𝐾 ≔ A𝐾/𝐾.

1.5.2 Definition. The Pontryagin dual of an LCA group 𝐴 is the LCA
group

𝐴 ≔ Hom(𝐴,T).

The assignment 𝐴 𝐴 is a functor LCAop LCA.

1.5.3Theorem (Pontryagin).The assignment 𝐴 𝐴 is an equivalence
LCAop ∼ LCA, and it is its own inverse.

𝐴 𝐴

Z/𝑝 Z/𝑝
finite finite

Z T
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discrete compact
R R

vector group 𝑉 𝑉∨

product∏𝛼∈𝛬 𝐴𝛼 coproduct∐𝛼∈𝛬 𝐴𝛼
limit lim𝐴𝛼 colimit colim𝐴𝛼

closed subgroup 𝐵 ≤ 𝐴 quotient 𝐴/𝐵⟂

Q/Z Ẑ
Q𝑝/Z𝑝 Z𝑝
torsion profinite

{𝐾𝛽}∏∐𝛼∈𝛬 𝐴𝛼
{𝐾⟂𝛽 }∏∐𝛼∈𝛬 𝐴𝛼

Afin Afin
Q𝑝 Q𝑝

number field 𝐾 A𝐾/𝐾

1.5.4 Example.

We now give an abstract proof of Pontryagin duality in a manner that
does not use the classification of LCA groups.

1.5.5 Definition. Suppose 𝐴 a topological abelian group. We will say
that 𝐴 is admissible if it can be exhibited as a topological subgroup of a
product∏𝛼∈𝛬 𝐵𝛼 of LCA groups.

Suppose 𝐴 a topological abelian group. Then we say that a topology 𝜏
on |𝐴| is 𝐴-characteristic if (|𝐴|, 𝜏) is an admissible topological group, and

Hom(𝐴,T) = Hom((|𝐴|, 𝜏),T).

1.5.6 Proposition. On any admissible topological abelian group 𝐴, there is
both a coarsest and finest 𝐴-characteristic topology.

Proof. The existence of the coarsest 𝐴-characteristic topology is an
exercise; let 𝐶 be the corresponding admissible topological abelian group.
Now let {𝐴′𝛼}𝛼∈𝛬 be the collection of all admissible topological abelian
groups such that |𝐴′𝛼| = |𝐴| and the topology on 𝐴′𝛼 is 𝐴-characteristic.
Form the pullback

𝐹 ∏𝛼∈𝛬 𝐴
′
𝛼

𝐶 𝐶𝛬.
𝛥
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Of course |𝐹| = |𝐴|, and it is now a simple matter to see that the topology
on 𝐹 is 𝐴-characteristic.

1.5.7 Definition. A topological abelian group is said to be T-cogenerated
if the topology on 𝐴 is the finest 𝐴-characteristic topology. We write
TAb for the category of T-cogenerated topological abelian groups and
continuous homomorphisms.

1.5.8 Exercise. Every LCA group is T-cogenerated.

Here’s an auxiliary category.

1.5.9 Definition. Denote by D the following category. The objects
are pairs (𝐴,𝐵, 𝜂) consisting of (discrete) abelian groups 𝐴 and 𝐵
and a pairing 𝜂 ∶ 𝐴 ⊗ 𝐵 T that is nondegenerate. A morphism Nondegeneracy means that for

every 𝑎 ∈ 𝐴, there is 𝑏 ∈ 𝐵 such
that 𝜂(𝑎, 𝑏) ≠ 1, and for every
𝑏 ∈ 𝐵, there is 𝑎 ∈ 𝐴 such that
𝜂(𝑎, 𝑏) ≠ 1.

(𝜙,𝜓) ∶ (𝐴,𝐵, 𝜂) (𝐴′,𝐵′, 𝜂′) is a homomorphism 𝜙 ∶ 𝐴 𝐴′ and a
homomorphism 𝜓 ∶ 𝐵′ 𝐵 such that

𝜂(𝜙(𝑎), 𝑏′) = 𝜂(𝑎,𝜓(𝑏′)).

It is not difficult to see that this is an additive category. Furthermore, it is
symmetric monoidal relative to the tensor product

(𝐴,𝐵, 𝜂)⊗ (𝐴′,𝐵′, 𝜂′) = (𝐴⊗𝐴′, Hom(𝐴,𝐵′)×Hom(𝐴⊗𝐴′,T)Hom(𝐴′,𝐵), 𝜉).

Now the object𝐷 ≔ (T𝛿,Z, id) is of particular import.

The following is now completely formal.

1.5.10 Proposition.The category D is self-dual. More precisely, it is
symmetric monoidal with respect to the tensor product above, it has an
internal HomHom, and moreover the natural morphism

𝐴 Hom(Hom(𝐴,𝐷),𝐷)

is an isomorphism.

1.5.11Theorem.The category TAb is equivalent to D above, and more-
over the functorHom(−,T) on TAb coincides with the functorHom(−,𝐷)
on D.
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Proof. The functor TAb D is given by the assignment

𝐴 (|𝐴|, Hom(𝐴,T), ev).

Its inverse is given as follows: for any (𝐴,𝐴′, 𝜂), give 𝐴 the subspace
topology of 𝐴′. Now define D TAb as the assignment

(𝐴,𝐴′, 𝜂) (|𝐴|, 𝜏),

where, 𝜏 is the finest 𝐴-characteristic topology on |𝐴|.

1.5.12 Notation. For any LCA group 𝐴, denote by ℳ(𝐴) the set of all
regular, countably additive, complex Borel measures on 𝐴. Denote by
ℋ(𝐴) the set of all Haar measures – i.e., nontrivial, biinvariant, regular,
countably additive, Borel measures – on 𝐴. Recall that ℋ(𝐴) is an R>0-
torsor.

1.5.13 Definition. Suppose 𝐴 an LCA group and 𝜇 ∈ ℳ(𝐴). Then
denote by 𝜇 ∶ 𝐴 C the function

𝜇(𝜒) ≔ ∫
𝐴
𝜒(𝑎) 𝑑𝜇(𝑎).

This is a uniformly continuous, bounded function, the Fourier–Stieltjes
trasform of 𝜇. If 𝜆 ∈ℋ(𝐴), and if 𝜇 is absolutely continuous with respect
to 𝜆, then by Radon–Nikodym, 𝑑𝜇 = 𝑓 𝑑𝜆 for some 𝑓 ∈ 𝐿1(𝐴, 𝜆). In this
case, we write 𝑓 for 𝜇. This is the Fourier transform of 𝑓.

In the other direction, if 𝜇 ∈ℳ(𝐴). Then denote by 𝜇̌ ∶ 𝐴 C the
function

𝜇̌(𝑎) ≔ ∫
𝐴
𝜒(𝑎) 𝑑𝜇(𝜒).

This is a bounded function, the inverse Fourier–Stieltjes trasform of 𝜇. If
𝜆 ∈ ℋ(𝐴), and if 𝜇 is absolutely continuous with respect to 𝜆, then by
Radon–Nikodym, 𝑑𝜇 = 𝑓 𝑑𝜆 for some 𝑓 ∈ 𝐿1(𝐴, 𝜆). In this case, we write
̌𝑓 for 𝜇̌. This is the inverse Fourier transform of 𝑓.

1.5.14Theorem.The assignment 𝜇 𝜇 is an isomorphism

ℳ(𝐴) ≅ 𝒞𝑢(𝐴),

where 𝒞𝑢(𝐴) denotes the space of uniformly continuous, bounded functions
on 𝐴; in fact, it is an algebra isomorphism for the convolutions.
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The assignment 𝑓 𝑓 is an isomorphism

𝐿1(𝐴, 𝜆) ≅𝒲0(𝐴),

where 𝒲0(𝐴) ⊂ 𝒞0(𝐴) is a dense subalgebra called the Wiener algebra.

1.5.15 Lemma. If 𝜆 ∈ ℋ(𝐴), then there is a 𝜇 ∈ ℋ(𝐴) such that for any
𝑓 ∈ 𝐿1(𝐴, 𝜆) ∩ 𝐿2(𝐴, 𝜆), one has

̂𝑓 ∈ 𝒞0(𝐴) ∩ 𝐿2(𝐴, 𝜇), and ‖ ̂𝑓‖2 ≤ ‖𝑓‖2.

Dually, for any 𝜙 ∈ 𝐿1(𝐴, 𝜇) ∩ 𝐿2(𝐴, 𝜇), one has

̌𝜙 ∈ 𝒞0(𝐴) ∩ 𝐿2(𝐴, 𝜆), and ‖ ̌𝜙‖2 ≤ ‖𝜙‖2.

1.5.16 Definition. If 𝜆 and 𝜇 are as in the previous Lemma, then since
𝐿1(𝐴, 𝜆) ∩ 𝐿2(𝐴, 𝜆) ⊂ 𝐿2(𝐴, 𝜆) is dense (and similarly for 𝐿2(𝐴, 𝜆)), the
Fourier transform 𝑓 ̂𝑓 and the inverse Fourier transform 𝜙 ̌𝜙
extend to continuoun linear maps

𝐿2(𝐴, 𝜆) 𝐿2(𝐴, 𝜇) and 𝐿2(𝐴, 𝜇) 𝐿2(𝐴, 𝜆),

respectively.

1.5.17Theorem (Fourier Inversion/Plancherel). For any 𝜆 ∈ℋ(𝐴), then
there is a unique 𝜇 ∈ℋ(𝐴) such that:

(1) for any 𝑓 ∈ 𝐿1(𝐴, 𝜆) ∩ 𝐿2(𝐴, 𝜆), one has

̂𝑓 ∈ 𝒞0(𝐴) ∩ 𝐿2(𝐴, 𝜇), and ‖ ̂𝑓‖2 ≤ ‖𝑓‖2;

(2) dually, for any 𝜙 ∈ 𝐿1(𝐴, 𝜇) ∩ 𝐿2(𝐴, 𝜇), one has

̌𝜙 ∈ 𝒞0(𝐴) ∩ 𝐿2(𝐴, 𝜆), and ‖ ̌𝜙‖2 ≤ ‖𝜙‖2;

(3) for any 𝑓 ∈ 𝐿2(𝐴, 𝜆),
̌ ̂𝑓 = 𝑓;

(4) for any 𝜙 ∈ 𝐿2(𝐴, 𝜇),
̂̌𝜙 = 𝜙;

(5) (Plancherel) The assignments 𝑓 𝑓 and 𝜙 ̌𝜙 are isometries, so
that 𝐿2(𝐴, 𝜆) ≅ 𝐿2(𝐴, 𝜇).



40 euler’s gamma function and the field with one element

The pair (𝜆, 𝜇) of the theorem are called dual Haar measures. We’ll get
in the habit of writing 𝜆 for a Haar measure on 𝐴 and 𝜆̂ for its dual Haar
measure on 𝐴.

Here’s a standard identity

1.5.18Theorem (Parseval). For any 𝑓,𝑔 ∈ 𝐿2(𝐴, 𝜆), one has

∫
𝐴
𝑓𝑔 𝑑𝜆 = ∫

𝐴
̂𝑓 ̂𝑔 𝑑𝜆̂.

Now in order to get off the ground with a general Poisson summation
formula, we must isolate a class of functions on any LCA group that are
of rapid decay. These are called the Schwartz–Bruhat functions. Again,
normally one proceeds by means of a classification result. We do things
differently here, following Scott Osborne’s paper.

1.5.19 Definition. A function 𝑓 ∈ 𝐿∞(𝐴, 𝜆) is of brisk decay if there
exists a compactum 𝐾 ⊂ 𝐴 such that for every integer 𝑛 ≥ 1 there is a
constant 𝐶𝑛 > 0 such that for any integer𝑚 ≥ 1, one has

‖𝑓|(𝐴⧵𝐾𝑚)‖∞ <
𝐶𝑛
𝑚𝑛
.

1.5.20. Easy observations include:

(1) Brisk decay is independent of the choice of 𝜆.

(2) If𝐾 is the compactum for a function 𝑓 of brisk decay, then 𝑓 van-
ishes ae away from the subgroup generated by𝐾.

(3) Functions of brisk decay are translation-invariant.

(4) Functions of brisk decay are closed under convolution.

1.5.21 Exercise. Prove that every function of brisk decay lies in 𝐿𝑝(𝐴, 𝜆)
for every 𝑝 ≥ 1. (Hint: bound the integral of |𝑓| over 𝐾𝑚 ⧵𝐾𝑚−1.)

1.5.22 Definition. We say that a function 𝑓 ∈ 𝐿∞(𝐴, 𝜆) is of rapid decay
– or is a Schwartz–Bruhat function – if and only if 𝑓 is of brisk decay
on 𝐴 and ̂𝑓 is of brisk decay on 𝐴. We write 𝒮(𝐴) for the collection of
Schwartz–Bruhat functions.
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1.5.23 Lemma.The vector space 𝒮(𝐴) is a Fréchet space that is dense in
𝐿2(𝐴, 𝜆). I believe 𝒮(𝐴) is also nuclear,

but I didn’t put any thought into
this.

1.5.24 Lemma.The Fourier transform gives a topological isomorphism
𝒮(𝐴) ≅ 𝒮(𝐴).

1.5.25 Lemma. Every Schwartz–Bruhat function lies in 𝒞0(𝐴).

1.5.26 Example. On a finite group, all functions are Schwartz-Bruhat
functions.

1.5.27 Example. On Z𝑚, the Schwartz-Bruhat functions are precisely the
functions 𝑓 such that for any 𝑘 ∈ Z𝑚>0, the quantity

sup
𝑛∈Z𝑚
|𝑛𝑘𝑓(𝑛)| < +∞.

1.5.28 Example. On T𝑚, the Schwartz-Bruhat functions are precisely the
smooth functions.

1.5.29 Example. On R𝑚, the Schwartz-Bruhat functions are precisely the
usual Schwartz functions.

1.5.30 Exercise. Describe the Schwartz–Bruhat functions on any group
of the form 𝐹 × Z𝑚 × T𝑛 ×R𝑝, where 𝐹 is finite abelian.

1.5.31 Example. One has

𝒮(𝐴) = colim(𝑈,𝐾) 𝒮(𝑈/𝐾),

where the colimit is over subgroups 𝐾 < 𝑈 < 𝐴 with 𝑈 open and compactly
generated, 𝐾 compact, and 𝑈/𝐾 a Lie group (and in particular of the form
𝐹 × Z𝑚 × T𝑛 ×R𝑝).

1.5.32 Example. If 𝐴 is totally disconnected, then 𝒮(𝐴) is precisely the
collection of locally constant functions with compact support.

1.5.33Theorem (Poisson summation). Suppose

0 𝐴′ 𝐴 𝐴″ 0
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a short exact sequence of LCA groups.

(1) For any 𝜆 ∈ ℋ(𝐴) and 𝜆′ ∈ ℋ(𝐴′), there exists a unique 𝜆″ ∈
ℋ(𝐴″) such that for any 𝑓 ∈ 𝒮(𝐴),

∫
𝑥∈𝐴
𝑓(𝑥) 𝑑𝜆(𝑥) = ∫

𝑧∈𝐴″
∫
𝑦∈𝐴′
𝑓(𝑦𝑧) 𝑑𝜆′(𝑦) 𝑑𝜆″(𝑧).

(2) For any 𝑓 ∈ 𝒮(𝐴), define a function 𝜋∗(𝑓) on 𝐴″ by integration along
the fibers

𝜋∗(𝑓)(𝑧) ≔ ∫
𝑦∈𝐴′
𝑓(𝑥𝑦) 𝑑𝜆″(𝑦),

where 𝑥 is any lift of 𝑧 to 𝐴. Then on 𝐴″, which is canonically identi-
fied with (𝐴′)⟂, we have

𝜋∗(𝑓) = 𝑓|(𝐴′)⟂ .

(3) For any 𝑥 ∈ 𝐴,

∫
𝑦∈𝐴′
𝑓(𝑥𝑦) 𝑑𝜆′(𝑦) = ∫

𝜒∈𝐴″
𝑓(𝜒)𝜒(𝑥) 𝑑𝜆″(𝜒)

Proof. The proof of point (1) is straightforward.2 2 And consequently it is an
Exercise.For 𝜒 ∈ (𝐴′)⟂ and for any 𝑥 ∈ 𝐴 and 𝑦 ∈ 𝐴′, one has 𝜒(𝑥𝑦) = 𝜒(𝑥).

Hence

𝜋∗(𝑓)(𝜒) = ∫
𝐴″
𝜋∗(𝑓)(𝑧)𝜒(𝑥) 𝑑𝜆″(𝑧)

= ∫
𝐴″
∫
𝐴′
𝑓(𝑦𝑧)𝜒(𝑦𝑧) 𝑑𝜆′(𝑦) 𝑑𝜆″(𝑥𝐴′)

= ∫
𝐴
𝑓(𝑥)𝜒(𝑥) 𝑑𝜆(𝑥),

where the last identification follow from point (1). This proves point (2).
Finally, Fourier Inversion gives, for any 𝑥 ∈ 𝐴 with image 𝑧 = 𝜋(𝑥),

∫
𝑦∈𝐴′
𝑓(𝑥𝑦) 𝑑𝜆′(𝑦) = 𝜋∗(𝑓)(𝑧) =

̂

𝜋∗(𝑓)(𝑧)

=

̂

𝑓|(𝐴′)⟂ (𝑧)

= ∫
𝜒∈(𝐴′)⟂
𝑓(𝜒)𝜒(𝑥) 𝑑𝜆̂(𝜒),

whence we obtain (3).
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1.5.33.1 Corollary. If 𝛬 ⊂ 𝐴 is a discrete cocompact subgroup, then for
any 𝑓 ∈ 𝒮(𝐴), one has

∑
𝑥∈𝛬
𝑓(𝑥) = 1
covol(𝐴/𝛬)

∑
𝜒∈𝛬⟂
𝑓(𝜒).

1.6 Local zeta functions

We now assume that 𝑘 is a local field of characteristic 0.

1.6.1. We define an absolute value | ⋅ | on 𝑘 by choosing a Haar measure 𝜆,
and a measurable subset3 𝑈 of finite measure, and declaring 3 A compact neighborhood of 0

will do.

|𝑥| ≔ 𝜇(𝑥𝑈)
𝜇(𝑈)
.

The resulting absolute value does not depend on 𝜆 or 𝑈.
We have three options:

• If 𝑘 ≅ R, then |⋯ | is the ordinary abolute value.

• If 𝑘 ≅ C, then |⋯ | is the square of the ordinary absolute value.

• If 𝑘 is nonarchimedean, let 𝑜 ⊂ 𝑘 be the ring of integers, 𝑝 ◁ 𝑜 the
maximal ideal, 𝜋 a uniformizing parameter, and 𝐹 the finite residue
field of order 𝑞. Then |𝜋| = 1/𝑞.

1.6.2. We have seen that 𝑘+ is Pontryagin self-dual; the isomorphism
𝑘+ ≅ 𝑘+ is not unique, but for any character 𝜒 ∈ 𝑘+, we may obtain such
an isomorphism by 𝑥 𝜒(𝑥). For each such 𝜒, there exists a unique
Haar measure 𝜇+ on 𝑘+ such that 𝜇+ = 𝜇+ under this identification, and
moreover, 𝜇+ does not depend on 𝜒. We therefore dub this the canonical
additive Haar measure.

1.6.3. It is convenient4 to fix a character𝑋𝑘 ∈ 𝑘+ – and hence an 4 though perhaps unnecessary?
I’m still not clear on how much
really depends on these choices,
which do seem in some sense
uniform.

isomorphism 𝑘+ ≅ 𝑘+ – once and for all. We have cases

(1) If 𝑘 ≅ R, then select

𝑋R ∶ R(−1)
R R/Z ≅ 𝑆1.

(2) If 𝑘 ≅ Q𝑝, then select

𝑋Q𝑝 ∶ Q𝑝 Q𝑝/Z𝑝 ⊂ Q/Z ⊂ 𝑆1.
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(3) If 𝑘 ≅ F𝑝((𝑡)), then take the coefficient of 𝑡−1 as a map F𝑝((𝑡)) F𝑝
and select

𝑋F𝑝((𝑡)) ∶ F𝑝((𝑡)) F𝑝 ⊂ 𝑆1.

(4) If 𝑘 ⊂ 𝑘0 is an extension of one of the above “prime” cases, then select

𝑋𝑘 ≔ 𝑋𝑘0 ∘ tr𝑘/𝑘0 .

1.6.4. Now we look to 𝑘×. We have a exact sequence

1 𝑈𝑘 𝑘× 𝑉𝑘 1,

where
𝑉𝑘 ≔ {𝑣 ∈ R>0 | ∃𝑥 ∈ 𝑘× 𝑣 = |𝑥|}

is the valuation group of 𝑘×, which is R>0 itself if 𝑘 is archimedean and
𝑞Z otherwise, and

𝑈𝑘 ≔ {𝑥 ∈ 𝑘× | |𝑥| = 1}

is compact. This sequence is (noncanonically) split by a homomorphism
𝑥 ̃𝑥, which in the nonarchimedean case is determined by a uniformis-
ing parameter.

Now we wish to specify a canonical multiplicative Haar measure. To
this end, if 𝑔 ∈ 𝒞00(𝑘×), then the function 𝑔(𝑥)/|𝑥| is a function in
𝒞00(𝑘+ − {0}). So we define a functional 𝛷 on 𝒞00(𝑘×) by

𝛷(𝑔) ≔ ∫
𝑘+−{0}

𝑔(𝑥)
|𝑥|
𝑑𝜇+.

1.6.5 Exercise. Show that the functional 𝛷 is invariant under translation.

Consequently, 𝛷 corresponds to a Haar measure which we might as
well call log |𝜇+|. Now we normalise log |𝜇+|:

• If 𝑘 is archimedean, then 𝜇× = log |𝜇+|.

• If 𝑘 is nonarchimedean, then

𝜇× = 𝑞
𝑞 − 1
log |𝜇+|.

1.6.6 Exercise. If 𝑘 is the completion of a number field𝐾 at a finite place
𝑝, compute the volume of 𝑈𝑘 under 𝜇×. Answer:

𝜇×(𝑈𝑘) =
1
√𝑑𝑘
,
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where 𝑑𝑘 is the discriminant of 𝑘, which is 1 for all 𝑝 except those that
divide the discriminant of 𝐾.

1.6.7 Definition. A quasicharacter on 𝑘× is a homomorphism 𝑘× C×.

1.6.8. Any quasicharacter 𝜓 on 𝑘× factors as

𝜓(𝑥) = 𝜒( ̃𝑥)|𝑥|𝑠,

where 𝜒 is the character on 𝑈𝑘 obtained as the restriction of 𝜓, and 𝑠 is
determined by 𝜓 completely if 𝑘 is archimedean, and modulo 2𝜋𝑖/ log 𝑞 if
𝑘 is nonarchimedean.

The assignment 𝜓 (𝜒, 𝑠) identifies the set 𝑄𝑘 of quasicharacters on
𝑘× with 𝑈𝑘 × 𝑆𝑘, where

𝑆𝑘 =
{
{
{

C if 𝑘 is archimedean;

C/(2𝜋𝑖/ log 𝑞)Z if 𝑘 is nonarchimedean.

We endow 𝑄𝑘 with the structure of a complex manifold5 by declaring 5 with infinitely many compo-
nentsthat for any character6 𝜒 ∈ 𝑈̂𝑘, the map 𝑠 𝜒( ̃𝑥)|𝑥|𝑠 should be a local 6 Note that 𝑈𝑘 is discrete.

isomorphism.
Also note that the quantity ℜ(𝜓) ≔ ℜ(𝑠) is uniquely determined by
𝜓.7 We call ℜ(𝜓) the exponent of 𝑠. 7 Why?

In effect, 𝑄𝑘 is going to be our analogue of the complex plane, and
we’re again going to work with “strips”

⟩𝑎, 𝑏⟨ ≔ {𝜓 ∈ 𝑄𝑘 | ℜ(𝜓) ∈ ]𝑎, 𝑏[}.

1.6.9 Definition. Suppose now 𝑓 ∈ 𝒮(𝑘+). For any quasicharacter 𝜓 with
ℜ(𝜓) > 0, set

𝑧(𝑓,𝜓) ≔ ∫
𝑘×
𝑓(𝑥)𝜓(𝑥) 𝑑𝜇×(𝑥).

1.6.10 Lemma.The function 𝑧(𝑓,𝜓) is well defined and holomorphic on
the region ⟩0, +∞⟨.

Now to get our local functional equation, we need the analogue of
𝑠 1 − 𝑠 on 𝑄𝑘. This is the following.
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1.6.11 Notation. Define an involution 𝜓 𝜓̂ on 𝑄𝑘, where

𝜓̂(𝑥) ≔ |𝑥|
𝜓(𝑥)
.

Note that ℜ(𝜓̂) = 1 − ℜ(𝜓).

1.6.12 Exercise. Use Fubini to prove that for 𝜓 ∈ ⟩0, 1⟨ and 𝑓,𝑔 ∈ 𝒮(𝑘+),
we have

𝑧(𝑓,𝜓)𝑧(𝑔, 𝜓̂) = 𝑧(𝑔,𝜓)𝑧(𝑓, 𝜓̂).

For each character 𝜒 ∈ 𝑈̂𝑘, if we can find one function 𝑓𝜒 ∈ 𝒮(𝑘+)
such that:

(1) 𝜓 𝑧(𝑓𝜒, 𝜓̂) is not identically 0 on ({𝜒} × 𝑆𝑘) ∩ ⟩0, 1⟨, and

(2) the function

𝜌(𝜓) ≔ 𝑧(𝑓,𝜓)
𝑧(𝑓, 𝜓̂)

admits a meromorphic continuation to all of {𝜒} × 𝑆𝑘,

then for any 𝑔 ∈ 𝒮(𝑘+), the function 𝑧(𝑔,𝜓) admits a meromorphic
continuation to all of 𝑄, and moreover

𝑧(𝑔,𝜓) = 𝜌(𝜓)𝑧(𝑔, 𝜓̂).

We’ll construct our functions 𝑓𝜒 case by case for the “prime fields.” The
appropriate mods involving the trace are left as an Exercise.

(1) Suppose 𝑘 = R. There are two options for 𝜒:

(1.a) For 𝜒 = 1, take 𝑓1(𝑥) = exp(−𝜋𝑥2), so that when 𝜓(𝑥) = |𝑥|𝑠,
we get

𝑧(𝑓1,𝜓) = 𝜋−𝑠/2𝛤(𝑠/2),

and
𝑧(𝑓1, 𝜓̂) = 𝜋(𝑠−1)/2𝛤(1 − 𝑠/2).

Hence
𝜌(𝑠) = 21−𝑠𝜋−𝑠 cos(𝜋

2
𝑠)𝛤(𝑠),

which we’ve seen is meromorphic on C.
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(1.b) For 𝜒 = −1, take 𝑓−1(𝑥) = 𝑥 exp(−𝜋𝑥2), so that when
𝜓(𝑥) = sgn(𝑥)|𝑥|𝑠, we end up with

𝜌(𝑠) = 𝑖21−𝑠𝜋−𝑠 sin(𝜋
2
𝑠)𝛤(𝑠),

which again is meromorphic on C.

(2) Suppose 𝑘 = Q𝑝. Then we have two options for 𝜒:

(2.a) 𝜒 = 1 (unramified case). Choose 𝑓1 to be the indicator
function of Z𝑝. Then

𝑓1(𝑥) = ∫
Z𝑝
exp(−2𝜋𝑖{𝑥𝑦}) 𝑑𝜇(𝑦) = 𝑓1.

Now let’s perform our Mellin integrals for 𝜓 = | ⋅ |𝑠 (for
𝑠 ∈ ⟩0, 1⟨:

𝑧(𝑓1,𝜓) = ∫
Q×𝑝
𝑓1(𝑥)|𝑥|𝑠 𝑑𝜇×(𝑥)

= 𝑝
𝑝 − 1
∫

Z𝑝−{0}
|𝑥|𝑠−1𝑑𝜇(𝑥)

=
+∞
∑
𝑟=0
𝑝−𝑟𝑠 = 1
1 − 𝑝−𝑠
,

and, on the other side,

𝑧(𝑓1, 𝜓̂) = ∫
Q×𝑝
𝑓1(𝑥)|𝑥|1−𝑠 𝑑𝜇×(𝑥)

= 1
1 − 𝑝𝑠−1

,

which is not identically zero on ({1} × 𝑆𝑘) ∩ ⟩0, 1⟨. So

𝜌(𝑠) = 1 − 𝑝
(𝑠 − 1)
1 − 𝑝𝑠

,

which meromorphically continues to the component {1} × 𝑆𝑘.

(3) 𝜒 ≠ 1 (ramified case). Now 𝜒 factors through some (Z/𝑝𝑛)× 𝑆1,
and assume that 𝑛 is minimal with this property. Set

𝑓𝜒(𝑥) ≔
{
{
{

0 if |𝑥| > 𝑝𝑛;

exp(2𝜋𝑖{𝑥}) if |𝑥| ≤ 𝑝𝑛.
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Basic properties of Fourier transforms give

𝑓𝜒(𝑥) =
{
{
{

0 if |1 − 𝑥| > 𝑝𝑛;

𝑝𝑛 if |1 − 𝑥| ≤ 𝑝𝑛.

Now we have 𝜓(𝑥) = 𝜒( ̃𝑥)|𝑥|𝑠, and we compute8 8 Here’s our old friend the
Gaußsum!

𝑧(𝑓𝜒,𝜓) =
𝑝𝑛𝑠+1−𝑛

𝑝 − 1

𝑝𝑛−1

∑
𝑟=1
𝜒(𝑟) exp(2𝜋𝑖𝑟/𝑝𝑛),

and
𝑧(𝑓𝜒,𝜓) =

𝑝
𝑝 − 1
,

and now

𝜌(𝜓) = 𝑝𝑛(𝑠−1)
𝑝𝑛−1

∑
𝑟=1
𝜒(𝑟) exp(2𝜋𝑖𝑟/𝑝𝑛).

No problem continuing this to {1} × 𝑆𝑘.

(4) When𝐾 = F𝑝((𝑡)), we’ll run essentially the same program, with the
indicator function in the unramified case and, in the ramified case, a
rescaled version thereof multiplied by the character.

1.7 Global L-functions

Now we let 𝐾 be a global field. Our identifications 𝐾+𝑣 ≅ 𝐾+𝑣 give us a
selected identification

A𝐾 ≅ Â𝐾.

There’s a unique norm on this ring induced by the finite ones. Similarly,
the Tamagawa measure on A𝐾 is the measure 𝜇+ given by forming the
product of the 𝜇+𝑣 ’s, and the Tamagawa measure on I𝐾 is the measure 𝜇×

given by forming the product of the 𝜇×𝑣 ’s.
On 𝐾 ⊂ A𝐾, we install the counting measure. We have the following

consequence of Poisson summation:

1.7.1 Proposition. 𝜇(A𝐾/𝐾) = 1.

For the idèles, we have a canonical norm coming from all the local
norms, and to embed 𝑘× nicely, we first need to pass to the idèles of norm
1:

1 I1𝐾 I𝐾 𝑉𝐾 1.
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Now if 𝐾 is a number field, 𝑉𝐾 = R>0, and if 𝐾 is a function field, then
𝑉𝐾 = 𝑞Z . In the first case, choose the measure on 𝑉𝐾 to be log 𝜇, and in
the second, choose the measure to be (log 𝑞) ⋅ #. Now select the measure
𝜇1 on I×𝐾 to be compatible with the other two in the usual way.

1.7.2 Proposition. 𝐾× ⊂ I1𝐾 is discrete and cocompact.

1.7.3 Definition. A homomorphism 𝜒 ∶ Î𝐾/𝐾× C× is called a qua-
sicharacter. We’ll call the space of all these H.

H decomposes (topologically) as the product (𝐾×)⟂ × C; any 𝜓 ∈ H
can be written uniquely as 𝑥 𝜒(𝑥)|𝑥|𝑠, where 𝜒 ∈ (𝐾×)⟂ and 𝑠 ∈ C is
an action of C that gives H a complex manifold structure.

Again any 𝜙 gives rise to 𝜓̂, given by 𝑥 |𝑥|
𝜓(𝑥) .

1.7.4 Definition. Suppose 𝑓 ∈ 𝒮(A𝐾), and suppose 𝜒 ∈ H. Then we
define

𝑍(𝑓,𝜒) ≔ ∫
I𝐾
𝑓(𝑥)𝜒(𝑥) 𝑑𝜇×(𝑥).

1.7.5Theorem.The integral 𝑍(𝑓,𝜓) converges for ℜ(𝜓) > 1. It extends to
a meromorphic function on H, and the only poles are at (1, 0) with residue
− covol(𝐾×)𝑓(0) and at (1, 1) with residue covol(𝐾×)𝑓(0). Finally, we
have the simple functional equation

𝑍(𝑓,𝜓) = 𝑍(𝑓, 𝜓̂).

High points of proof. We can decompose that integral

𝑍(𝑓,𝜒) ≔ ∫
I𝐾
𝑓(𝑥)𝜒(𝑥) 𝑑𝜇×(𝑥) = ∫

+∞

0
𝑍𝑡(𝑓,𝜒) 𝑑 log 𝑡,

where

𝑍𝑡(𝑓,𝜒) = ∫
I1𝐾
𝑓(𝑡𝑦)𝜓(𝑡𝑦) 𝑑𝜇1(𝑦).

Now let’s analyse 𝑍𝑡 not by decomposing it into local pieces, but
instead selecting a fundamental domain 𝐸 for 𝑘× and writing

𝑍𝑡(𝑓,𝜓) = ∫
𝐸
( ∑
𝛼∈𝐾×
𝑓(𝛼𝑡𝑦))𝜓(𝑡𝑦) 𝑑𝜇1(𝑦).
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On the other hand, Poisson summation yields

∫
𝐸
(∑
𝛼∈𝐾
𝑓(𝛼𝑡𝑦))𝜓(𝑡𝑦) 𝑑𝜇1(𝑦) = ∫

𝐸
(∑
𝛼∈𝐾
𝑓(𝛼𝑦/𝑡)) 𝜓̂(𝑦/𝑡) 𝑑𝜇1(𝑦),

whence one obtains

𝑍𝑡(𝑓,𝜓) + 𝑓(0) ∫
𝐸
𝜓(𝑡𝑦) 𝑑𝜇1(𝑦) = 𝑍1/𝑡(𝑓, 𝜓̂) + 𝑓(0) ∫

𝐸
𝜓̂(𝑦/𝑡) 𝑑𝜇1(𝑦)

It turns out that there are two options for those integrals: either the
quasicharacter is unramified or it isn’t. If it is, then we get

∫
𝐸
𝜓(𝑡𝑦) 𝑑𝜇1(𝑦) = 𝑡𝑠𝜇1(𝐸);

if not, then we get

∫
𝐸
𝜓(𝑡𝑦) 𝑑𝜇1(𝑦) = 1.

So the ramified case is going to be easier: you take 𝑍(𝑓,𝜓) and split it
into two pieces, using what you’ve learned.

𝑍(𝑓,𝜒) = ∫
+∞

1
𝑍𝑡(𝑓,𝜒) 𝑑 log 𝑡 + ∫

+∞

1
𝑍𝑢(𝑓,𝜒) 𝑑 log 𝑢.

That’s literally it in that case.
The unramified case is only mildly more annoying.



2
The field with one element

2.1 Borger’s picture

Jim Borger has proposed a fascinating picture of F1, which offers an
amazing insight into this object. To describe it, it’s convenient to start
with an understanding of plethystic algebra.

2.1.1. Our rings and algebras will all be commutative with 1.

2.1.2 Definition. Let 𝑘 denote a ring. An affine 𝑘-algebra scheme is an
endofunctor𝑋 ∶ Alg𝑘 Alg𝑘 such that the composite

Alg𝑘 Alg𝑘 Set

is corepresentable. If𝑋 is in addition a comonad, then we say that𝑋 is a
𝑘-plethory.

2.1.3. An affine 𝑘-algebra scheme is𝑋 = Spec𝑅 for a 𝑘-algebra 𝑅 that has
been equipped with the following structure:

• a cozero 𝜖+ ∶ 𝑅 𝑘;

• a coaddition 𝛥+ ∶ 𝑅 𝑅 ⊗𝑘 𝑅;

• an antipode 𝜎 ∶ 𝑅 𝑅;

• a coone 𝜖× ∶ 𝑅 𝑘;

• a comultiplication 𝛥× ∶ 𝑅 𝑅 ⊗𝑘 𝑅;

• a ring map 𝑘 Hom𝑘(𝑅, 𝑘);
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subject to a whole pile of axioms.
The structure of a plethory on𝑋 then suppiles one more piece of data

on 𝑅, a noncommutative operation

∘ ∶ 𝑅 ×𝑘 𝑅 𝑅

that corepresents the comonad structure. This is called the composition
product or plethysm.

2.1.4 Example.The constant endofunctor at the zero ring is an affine
𝑘-algebra scheme; it is corepresented by Spec 𝑘.

2.1.5 Example.The identity endofunctor 𝐼 ∶ Alg𝑘 Alg𝑘 is an affine
𝑘-algebra scheme; it is corepresented by Spec 𝑘[𝑡]. Since it is obviously a
comonad, this is also a plethory.

2.1.6 Example.The assignment 𝑆 W(𝑆) of the ring of “big” Witt
vectors is a Z-plethory. It is corepresented by the algebra 𝛬 of symmetric
functions over Z. This is defined as the subring of Z⟦𝑥1,𝑥2,…⟧AutN

consisting of those power series in which the degree of the monomials is
bounded. The theorem of elementary symmetric functions shows that

𝛬 = Z[𝜆1, 𝜆2,… ],

where
𝜆𝑛 = ∑
𝑖1<⋯<𝑖𝑛
𝑥𝑖1⋯𝑥𝑖𝑛

are the usual elementary symmetric functions. (We usually let 𝜆0 = 1.)
We could also freely generate 𝛬 under the complete symmetric functions

𝜎𝑛 = ∑
𝑖1≤⋯≤𝑖𝑛
𝑥𝑖1⋯𝑥𝑖𝑛

Of special relevance are the Adams symmetric functions

𝜓𝑛 ≔ 𝑥𝑛1 + 𝑥𝑛2 +⋯ ;

we may freely generate 𝛬 by elements 𝑤1,𝑤2,⋯ ∈ 𝛬 determined by the
relations

𝜓𝑛 = ∑
𝑑|𝑛
𝑑𝑤𝑛/𝑑𝑑 ,
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since

∑
𝑚∈N0

(−1)𝑚𝜆𝑚𝑇𝑚 = exp(− ∑
𝑚∈N

1
𝑚
𝜓𝑚𝑡𝑚) = ∏

𝑚∈N
(1 −𝑤𝑚𝑡𝑚).

This is how one obtains the usual description of elements of W(𝑆) in terms
of Witt components (𝑤1,𝑤2,… ).

The plethysm is composition of symmetric functions; this corresponds to
the Artin–Hasse map W(𝑆) W(W(𝑆)).

We will describe all these structures very precisely with 𝐾-theory soon.

2.1.7 Example. If 𝐺 is a group, then the endofunctor 𝐹𝐺 ∶ 𝑆 𝑆𝐺 has
a comonad structure, and it is corepresented by 𝑘[𝐺], which is the free
polynomial algebra on the underlying set of 𝐺. This is not the group-algebra,
but it is the symmetric algebra generated by the group algebra 𝑘𝐺.

2.1.8 Definition. If 𝑃 is a 𝑘-plethory, then a 𝑃-algebra is a coalgebra for
the comonad 𝑃.

2.1.9 Example. Every 𝑘-algebra is an 𝐼-algebra for the identity plethory 𝐼
represented by 𝑘[𝑥] in a unique way.

2.1.10 Example. If 𝐺 is a group, then an 𝐹𝐺-algebra is a 𝑘-algebra with an
action of 𝐺.

2.1.11 Definition. Suppose 𝐾 an idempotent complete symmetric
monoidal category with finite colimits (such that the symmetric monoidal
structure preserves finite colimits separately in each variable). We write
Alg(𝐾) for the category of idenmpotent (commutative)𝐾-algebras. A
𝐾-biring is a comonad𝑋 ∶ Alg(𝐾) Alg(𝐾) such that the composite

Alg(𝐾) Alg(𝐾) Cat

is corepresentable. If𝑋 is a comonad, then we say that𝑋 is a 𝐾-plethory.

[...]

2.1.12 Definition. A quotient of the plethory W corepresented by 𝛬 is
the subplethory W𝛹 corepresented by the subring 𝛹 ⊂ 𝛬 generated by
the elements 𝜓𝑛 for 𝑛 ∈ N.
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2.1.13. The plethory W𝛹 is freely generated by the elements 𝜓𝑛 for
𝑛 ∈ N; that is, for any ring 𝑅, one has

W𝛹(𝑅) = 𝑅N

as a ring. For any 𝑛 ∈ N, define

𝜓𝑛 ∶ 𝑅N 𝑅N

by

𝜓𝑛(a) = 𝜓𝑛(𝑎1, 𝑎2, 𝑎3,… ) = (𝑎𝑛, 𝑎2𝑛, 𝑎3𝑛,… ).

The comonad structure W𝛹 W𝛹 ∘W𝛹 is then given by

(a) (𝜓1(a),𝜓2(a),𝜓3(a)… ).

A 𝛹-algebra is thus a ring 𝑅 with an action of N×. Of course and
𝛬-algebra gives rise to a 𝛹-algebra structure.

To some degree, the structure of a 𝛬-algebra can be recovered from
the strecture of a 𝛹-algebra.

2.1.14 Lemma (Newton formula). For any 𝑘 ≥ 1, one has

𝑘
∑
𝑚=1
(−1)𝑘−𝑚𝜆𝑘−𝑚𝜓𝑘 = (−1)𝑘+1𝑘𝜆𝑘.

2.1.14.1 Corollary. If 𝑅 is flat over Z, then for any 𝛹-algebra structure on
𝑅, there is at most one 𝛬-algebra structure that lifts it.

Proof. The lemma above permits one to write each 𝜆𝑘 as a homogeneous
polynomial of degree 𝑘 with Q coefficients in 𝜓1,… ,𝜓𝑘, where |𝜓𝑗| =
𝑗.

2.1.15Theorem (Wilkerson). If 𝑅 is flat over Z, then any 𝛹-algebra
structure on 𝑅 in which for every prime 𝑝,

𝜓𝑝(𝑥) ≅ 𝑥𝑝 mod 𝑝𝑅

admits a unique 𝛬-algebra structure lifting it.
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Proof. We’re just after existence. Uniqueness we already have. On 𝑅 ⊗Q,
define 𝜆𝑘 for 𝑘 ≥ 1 by means of generating functions:

−𝑡 𝑑
𝑑𝑡
log( ∑
𝑚∈N0

𝜆𝑚(𝑥)𝑡𝑚) = ∑
𝑛∈N
(−1)𝑛𝜓𝑛(𝑥)𝑡𝑛.

This is1 a 𝛬-structure on 𝑅 ⊗Q. 1 Exercise.

We aim to show that for any prime 𝑝 and any 𝑥 ∈ 𝑅 ⊗ Z(𝑝), the map
𝜆𝑘 ∶ 𝑅 ⊗Q 𝑅 ⊗Q carries 𝑥 to 𝑅 ⊗ Z(𝑝). This is obvious for 𝑘 = 1,
since 𝜆1(𝑥) = 𝑥. Now assume the claim for all 𝜆𝑚 for𝑚 < 𝑘.

Suppose 𝑝 ∤ 𝑘. Then we can divide by 𝑘, so the Newton formula plus
the induction hypothesis does the job.

If 𝑘 = 𝑝, we observe that

𝜓𝑝(𝑥) − 𝑥𝑝 = 𝑝 ((−1)𝑝+1𝜆𝑝(𝑥) + 𝑃(𝜆1(𝑥),… , 𝜆𝑝−1(𝑥)))

for some polynomial 𝑃 with Z coefficients. By assumption, the left hand
side lies in 𝑝(𝑃 ⊗ Z(𝑝)), so

(−1)𝑝+1𝜆𝑝(𝑥) + 𝑃(𝜆1(𝑥),… , 𝜆𝑝−1(𝑥)) ∈ 𝑅 ⊗ Z(𝑝).

Now the induction hypothesis does the job.
If 𝑘 = 𝑚𝑝 for some𝑚, then we observe that

𝜆𝑘(𝑥) = (−1)(𝑝+1)(𝑚+1)𝜆𝑚(𝜆𝑝(𝑥)) +𝑄(𝜆1(𝑥),… , 𝜆𝑘−1)

for some polynomial 𝑄 with Z coefficients. Again with the induction
hypothesis.

2.1.16. Wilkerson’s theorem says that if 𝑅 is flat over Z, then a 𝛬-algebra
structure on 𝑅 is exactly the same as a compatible family of lifts of
frobenius for each prime 𝑝. Incidentally, one can show that if 𝑅 is a
reduced 𝛬-algebra, then it is automatically flat over Z.

2.1.17 Definition (Borger). An F1-algebra is a 𝛬-algebra. We write
CAlgF1

for the category of such.

2.1.18. We have an adjunction

− ⊗F1 Z ∶ CAlg(F1) CAlg(Z) ∶ 𝑈,
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where − ⊗F1 Z is the functor that forgets the 𝛬-algebra structure, and 𝑈 is
W. The functor − ⊗F1 Z preserves both limits and colimits, since it admits
a right adjoint (W) and a left adjoint.

We think of the 𝛬-algebra structure as descent data to F1. When a ring
𝑅 admits a 𝛬 structure, we say that 𝑅 is defined over F1 or descends to F1.

2.1.19 Example.The ring Z is defined over F1 in a unique fashion, in
which each 𝜓𝑝 = id.

2.1.20 Example. For any commutative monoid𝑋, the monoid algebra Z𝑋
has is defined over F1: the descent data are given by 𝜓𝑝(𝑥) = 𝑥𝑝 for any
𝑥 ∈ 𝑋.

In this way, one has

Z[𝑡]/(𝑡𝑛 − 1) ≅ F1𝑛 ⊗F1 Z.

The F1-algebra F1𝑛 is the field with 1𝑛 elements, which we regard as a field
extension of F1.

Pushing this farther, we can write

Z(Q/𝑍𝑍) ≅ F1 ⊗F1 Z.

2.1.21 Example.There is actually another F1-structure on Z[𝑥] (different
from Z[N0]). This is the one that has the potential to be more interesting
from our point of view.

Consider the category Rep(SL2(C)) of finite dimensional representations
of Rep(SL2(C)); denote by 𝑉 the standard 2-dimensional representation.
We have the representation ring 𝐾0(Rep(SL2(C))), which is a 𝛬-algebra in
the canonical manner. We may compute it by identifying a representation

with its character on the torus elements (
𝑎 0
0 𝑎−1
), so that [𝑉] = 𝑎 + 𝑎−1.

We find that 𝐾0(Rep(SL2(C))) is then the fixed points of the ring Z[𝑎, 𝑎−1]
under the 𝐶2 action 𝑎 𝑎−1. Of course, if 𝑥 = [𝑉] = 𝑎 + 𝑎−1, then we
obtain an isomorphism

𝐾0(Rep(SL2(C))) ≅ Z[𝑥],

but the 𝛬-algebra structure turns out to be different.
Indeed, to see this, consider the 2𝑛-dimensional tensor power 𝑉⊗𝑛,

which corresponds to [𝑉⊗𝑛] = 𝑥𝑛 = (𝑎 + 𝑎−1)𝑛 ∈ Z[𝑎, 𝑎−1], and the
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(𝑛 + 1)-dimensional representation Sym𝑛(𝑉), which corresponds to

[Sym𝑛(𝑉)] = 𝑎𝑛 + 𝑎𝑛−2 +⋯+ 𝑎2−𝑛 + 𝑎𝑛 ∈ Z[𝑎 + 𝑎−1].

If we substitute 𝑎 = exp(𝑖𝜃), then we get 𝑥 = 2 cos 𝜃, and we find that

[Sym𝑛(𝑉)] = 𝑈𝑛(𝑥/2),

where 𝑈𝑛 are the Chebyshev polynomials of the second kind. Equivalently,
the Adams operations are given by

𝜓𝑝(𝑥) = 2𝑇𝑝(𝑥/2),

where 𝑇𝑝 are the Chebyshev polynomials of the first kind.

2.1.22. One might like to declare that the “correct” polynomial ring in
one variable over F1 is the free F1-algebra generated by one element. The
problem is that it’s not so clear what “free” means, and to this end the
problem is that it’s not so clear what the “underlying set” of an F1-algebra
ought to be.

To illustrate, consider a finite Galois extension 𝐹 ⊂ 𝐸 with group
𝐺. Then an 𝐹-algebra is the “same” as an 𝐸-algebra 𝑅 equipped with a
semilinear action of 𝐺. The underlying set of the 𝐹-algebra is, of course,
not the underlying set of 𝑅, but rather the underlying set of 𝑅𝐺. Under
the analogy between 𝛬 and 𝐸𝜎[𝐺], it’s not a priori obvious what should
play the role of 𝑅𝐺. In the particular case in which 𝑅 is flat, a reasonable
answer might be fixed points for the action of N×.

To describe the theory of more general objects over F1, we can extend
the comonad W as follows.

2.1.23 Definition. Consider Shv(Z), the category of étale sheaves (of
sets) on the category Aff/Z of finitely generated (over Z) affine schemes.
Since W is a monad on Aff/Z, the left Kan extension of W is again a
monad on Shv(Z), and we write Shv(F1) for the resulting category of
algebras, and we call the objects thereof F1-sheaves.

Observe that Shv(F1) can equally well be considered the category
of coalgebras over the comonad given by precomposition with W. Fur-
thermore, it is not at all difficult to check that precomposition with W
preserves filtered colimits, whence Shv(F1) is a topos, which we call the
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large étale topos of F1. Furthermore, the adjunction

𝑣∗ ∶ Shv(F1) Shv(Z) ∶ 𝑣∗

is a geometric morphism of topoi. In fact, it is an essential geometric
morphism – the left adjoint 𝑣∗ admits a further left adjoint 𝑣!. However,
this geometric morphism is not étale, since the left adjoint 𝑣! is not
conservative; indeed, this would follow if and only if the assignment
𝑅 W(𝑅) is conservative.

We have to contend with the theory of modules over F1-algebras.
Luckily, we can be surprisingly concrete.

2.1.24 Definition (Beck). If 𝐶 is a category that admits all finite limits,
then for any object 𝐴 ∈ 𝐶, one may define an 𝐴-module to be an abelian
group object in the category 𝐶/𝐴, so that

Mod(𝐴) ≔ Ab(𝐶/𝐴).

If𝑀 is an 𝐴-module in this sense, then a derivation from 𝐴 to𝑀 is a
morphism 𝐴 𝑀 in 𝐶/𝐴; the set

Der(𝐴,𝑀) ≔ Mor𝐶/𝐴 (𝐴,𝑀)

admits an abelian group structure since𝑀 does.

2.1.25 Exercise. This recovers the usual notion of a module when 𝐶 is
the category of rings. Indeed, for any object 𝐵 ∈ Ab(𝐶/𝐴), the kernel
ker[𝐵 𝐴] inherits an 𝐴-module structure in the usual sense. On
the other hand, if𝑀 is an 𝐴-module in the usual sense, endow 𝐴 ⊕𝑀
with the ring structure of square-zero extension of 𝐴. Show that these
assignments define inverse equivalences of categories.

2.1.26 Proposition. If 𝐶 is presentable, then the forgetful functor

𝑈 ∶ Mod(𝐴) 𝐶/𝐴

admits a left adjoint 𝛺. Consequently, one has a universal derivation
𝑑 ∶ 𝐴 𝛺𝐴 that induces an isomorphism

MorMod(𝐴)(𝛺𝐴,𝑀) ≅ Der(𝐴,𝑀).
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2.1.27 Definition. It is a simple matter to see that the comonad W
extends to a comonad on the category CAlgnu(Z) of non-unital rings.
In particular, any abelian group can fed into W as a ring with zero
multiplication.

If 𝐴 is a ring and𝑀 is an 𝐴-module, then we write W(𝑀) for the
W(𝐴)-module given by the set𝑀N with componentwise addition and
scalar multiplication given by

(𝑎𝑚)𝑘 ≔ 𝜓𝑘(𝑎)𝑚𝑘.

If 𝐴 is an 𝛬-ring, then a 𝛬-module over 𝐴 is an 𝐴-module𝑀 and an
𝐴-linear map 𝜆 ∶ 𝑀 W(𝑀) such that 𝜖 ∘ 𝜆 = id, and the square

𝑀 W(𝑀)

W(𝑀) WW(𝑀)

W(𝜆)

𝛥

2.1.28 Proposition (Hesselholt). Suppose 𝐴 an F1-algebra. Then the
categoryMod(𝐴) is equivalent to the category of 𝛬-modules on 𝐴.

Proof. Formal. The assignment 𝐵 ker[𝐵 𝐴] lifts to an equivalence
from Mod(𝐴) to 𝛬-modules on 𝐴.

2.1.28.1 Corollary. Under this equivalence, a derivation from an F1-
algebra 𝐴 to an 𝐴-module𝑀 is a map 𝑑 ∶ 𝐴 𝑀 such that

1. 𝑑(𝑎 + 𝑏) = 𝑑(𝑎) + 𝑑(𝑏);

2. 𝑑(𝑎𝑏) = 𝑎𝑑(𝑏) + 𝑏𝑑(𝑎);

3.
𝜆𝑛(𝑑(𝑎)) = ∑

𝑘|𝑛
𝜆𝑘(𝑎)𝑛/𝑘−1𝑑(𝜆𝑘(𝑎)).

For any F1-algebra 𝐴 and any 𝐴-module𝑀, a derivation 𝐴 𝑀
is in particular a derivation 𝐴 ⊗F1 Z 𝑀 ⊗F1 Z; hence we obtain a
comparison homomorphism

𝛺𝐴⊗F1Z 𝛺𝐴 ⊗F1 Z.

2.1.28.2 Corollary.The comparison homomorphism above is an isomor-
phism.
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2.1.29. Perhaps even more down to earth is the following description of
𝐴-modules over an F1-algebra 𝐴: consider the twisted monoid algebra
𝐴𝜓N×; then Mod(𝐴) is equivalent to the category of left 𝐴𝜓N×-modules.

2.1.30 Example. Let’s consider F1 itself. Recall that in F1, the Adams
operations 𝜓𝑝 act trivially on Z. So an F1-module is a ZN×-module, i.e.,
an abelian group𝑀 along with commuting operations 𝜆𝑝 ∶ 𝑀 𝑀 for
every 𝑝 ∈ 𝛱.

2.1.31 Example. Suppose𝑋 a commutative monoid. Recall that N× acts
on𝑋 via 𝜓𝑝(𝑥) = 𝑥𝑝; we thus form the semidirect product𝑋 ⋊𝜓 N×. It is As a set,𝑋 ⋊𝜓 N× is𝑋 ×N×,

but the monoid action is twisted:
(𝑥,𝑚)(𝑦, 𝑛) = (𝑥𝜓𝑚(𝑦),𝑚𝑛).

easy to see that an F1𝑋-module is nothing more than an abelian group with
an action of𝑋 ⋊𝜓 N×.

In particular, if𝑋 = 𝐶𝑛, then we find than an F1-module consists of
an abelian group𝑀, an automorphism 𝜎 of𝑀 of order dividing 𝑛, and
commuting operations 𝜆𝑝 ∶ 𝑀 𝑀 such that 𝜆𝑝 ∘ 𝜎 = 𝜎𝑝 ∘ 𝜆𝑝.

Similarly, if𝑋 = Z, then we find that a quasicoherent sheaf on G𝑚,F1 is
an abelian group𝑀 with an automorphism 𝜎 and commuting operations
𝜆𝑝 ∶ 𝑀 𝑀 such that 𝜆𝑝 ∘ 𝜎 = 𝜎𝑝 ∘ 𝜆𝑝.

2.1.32 Example. A module over the Chebyshev line, F1[𝑥] is a mod-
ule over Z[𝑥]𝜓N×; i.e., it’s an abelian group𝑀 with an endomorphism
𝑥 ∶ 𝑀 𝑀 and commuting operators 𝜆𝑝 ∶ 𝑀 𝑀 such that

𝜆𝑝 ∘ 𝑥 = 2𝑇𝑝(𝑥/2) ∘ 𝜆𝑝.

We must compute the F1𝑛 -points of various sheaves over F1.

2.1.33 Example. If𝑋 is a monoid and 𝑆𝑋 ≔ Spec(F1𝑋) then of course

𝑆𝑋(F1𝑛 ) ≅ HomF1 (F1𝑋, F1𝐶𝑛) ≅ MorMon(𝑋,𝐶𝑛,+).

In particular, we find that

A1F1,toric(F1𝑛 ) = 𝐶𝑛,+

and
G𝑚,F1 (F1𝑛 ) = 𝐶𝑛.

2.1.34 Example. If A1F1 denotes Spec of the Chebyshev line, then

A1F1 (F1𝑛 ) = Hom𝛹(Z[𝑥],Z[𝐶𝑛]),
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an element of which picks out an element 𝑓 ∈ Z[𝑡]/(𝑡𝑛 − 1) such that for
any 𝑝 ∈ 𝛱,

𝑓(𝑡𝑝) = 2𝑇𝑝(𝑓(𝑡)/2) mod (𝑡𝑛 − 1).

2.1.35 Definition. Consider the poset 𝛷 of natural numbers ordered by
divisibility. A truncation set is a sieve 𝑆 ⊆ 𝛷 (equivalently, a subfunctor
of the terminal presheaf 𝛷 Set. If 𝑛 ∈ N, then let 𝑆/𝑛 denote the
pullback of 𝑆 under the multiplication by 𝑛map 𝑛 ∶ 𝛷 𝛷; that is,

𝑆/𝑛 ≔ {𝑑 ∈ 𝛷 | 𝑛𝑑 ∈ 𝑆}.

2.2 Bökstedt–Hesselholt–Madsen computations of THH

Fix a smooth scheme𝑋 over a perfect field 𝑘. Recall that

TR𝑛(𝑋,𝑝) ≔ THH(𝑋) ⟨𝑝𝑛−1⟩ .

The cyclotomic structure on THH endows TR•∗(𝑋,𝑝) with the structure
of a 𝑝-typical Witt complex.

2.2.1Theorem (Hesselholt–Madsen).There is a canonical ring isomor-
phism

𝑊•(𝑋) ∼ TR•0(𝑋,𝑝)

of cyclotomic Green functors.

Consequently, we obtain a unique morphism of 𝑝-typical Witt com-
plexes

𝜂 ∶ 𝑊•𝛺∗𝑋 TR•∗(𝑋,𝑝).

2.2.2Theorem (Hesselholt).The map 𝜂 induces an isomorphism

𝑊•𝛺𝑘𝑋 ∼ TR•𝑘(𝑋,𝑝)

for 𝑘 ≤ 1.

2.2.3Theorem (Hesselholt–Madsen). For each 𝑛 ≥ 1, the𝑊𝑛(𝑘)-module
TR𝑛2(𝑘,𝑝) is free of rank 1, and the canonical graded𝑊𝑛(𝑘)-algebra homo-
morphism

Sym(TR𝑛2(𝑘,𝑝)) TR𝑛∗(𝑘,𝑝)

is an isomorphism.
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2.2.4Theorem (Hesselholt). For each 𝑛 ≥ 1, the canonical graded𝑊𝑛(𝑘)-
algebra homomorphism

𝑊𝑛𝛺∗𝑋 ⊗𝑓∗𝑊𝑛(𝑘) 𝑓
∗TR𝑛∗(𝑘,𝑝) TR𝑛∗(𝑋,𝑝)

is an isomorphism.

2.3 Regularised products and determinants

2.3.1 Definition. Suppose, for any 𝑛 ∈ N, that 𝜆𝑛 is a complex number
with chosen argument 𝛼𝑛. Assume that𝑁 ∈ N such that 𝜆𝑛 ≠ 0 for any
𝑛 ≥ 𝑁. Consider the Dirichlet series

∑
𝑛≥𝑁
|𝜆𝑛|−𝑠 exp(−𝑖𝑠𝛼𝑛),

which converges on some half plane ⟩𝑀, +∞⟨. Assume also that this sum
admits an analytic continuation to a holomorphic function 𝜁𝑁(𝑠) on a
half-plane ⟩−𝜀, +∞⟨. The the regularised product

∏
𝑛∈N
(𝜆𝑛,𝛼𝑛) ≔ (

𝑁−1
∏
𝑛=1
)exp(−𝜁′𝑁(0)).

We say the regularised product converges when the assumptions above
hold.

2.3.2. We shall always take the branch of the argument lying in (−𝜋,𝜋].
The existence and value of the regularised product is independent of the
enumeration, so we are free to write∏𝑛∈𝑆 𝜆𝑛 for a countable set 𝑆.

2.3.3 Definition. Suppose 𝑉 a C-vector space of countable dimension,
and suppose that 𝛩 is an endomorphism of 𝑉. Assume the following:

• 𝑉 is the direct sum⨁𝜆∈C 𝑉𝜆, where 𝑉𝜆 = ker(𝛩 − 𝜆)𝑁 for𝑁 ≫ 0 is
finite-dimensional.

• Let (𝜆𝑛) be the sequence of eigenvalues of 𝛩, with multiplicity. The
regularised product

∏
𝑛
𝜆𝑛

converges.
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Then we define the regularised determinant as

det
∞
(𝛩) ≔ ∏

𝑛
𝜆𝑛.

2.3.4 Exercise. If 0 𝑉′ 𝑉 𝑉″ 0 is an exact sequence of vector
spaces and endomorphisms, then

det
∞
(𝛩) = det

∞
(𝛩′) det
∞
(𝛩″),

in the sense that if the right side converges, then so does the left, and then
the values are equal.

2.3.5 Example. If 𝛾 ∈ C× and 𝑧 ∈ C, then let us compute

∏
𝑛∈Z
𝛾(𝑧 + 𝑛).

The Hurwitz zeta function is defined on ⟩1, +∞⟨ by

𝜁(𝑠, 𝑧) ≔ ∑
𝑛∈N0

1
(𝑧 + 𝑛)𝑠
,

and it admits an analytic continuation to C with a pole at 1. We can
introduce

𝜁𝛾(𝑠, 𝑧) ≔ ∑
𝑛∈N0

1
(𝛾(𝑧 + 𝑛))𝑠

,

and we can compute that

∏
𝑛∈Z
𝛾(𝑧 + 𝑛) = (𝑧𝛾)−1 exp(− 𝑑

𝑑𝑠
𝜁𝛾(0, 𝑧)) exp(−

𝑑
𝑑𝑠
𝜁−𝛾(0, −𝑧)).

2.3.6 Proposition. Let 𝑉 be an anticommutative graded C-algebra such
that 𝑉𝑗 ⊂ 𝑉 is finite dimensional for all 𝑗. Suppose 𝛩 a graded C-linear
derivation, and suppose that there exists a unit 𝛽 ∈ 𝑉−2 such that

𝛩(𝑣) = 2𝜋𝑖
log 𝑞
𝛽.

Then
det
∞
(𝑠 −𝛩|𝑉2∗+𝑗) = det(1 − 𝑞−𝑠𝛩|𝑇𝑗)

Now we define the graded derivation 𝛩 on TP∗(𝑋) for𝑋 smooth over
F𝑞 as follows. For the periodicity class 𝛽 ∈ TP−2(𝑋), we set

𝛩(𝑣) = 2𝜋𝑖
log 𝑞
𝛽.
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and we define 𝛩 on TP0 and TP1 so that 𝑞𝛩 = Fr∗𝑞 . (This can actually be
done in more than one manner, but this point isn’t important.)

We thus find that

det
∞
(𝑠 −𝛩|TP2∗+𝑗(𝑋) ⊗𝑊 C) = det(1 − 𝑞−𝑠Fr∗𝑞 |TP𝑗 ⊗𝑊 C)



3
Connes–Consani on archimedean 𝐿-factors

3.1 Hodge structures and 𝐿-factors

3.1.1 Definition. Denote by S the real algebraic group C×; that is, S
is the Weil restriction of the complex algebraic group G𝑚 to R ⊂ C.
Denote by 𝑤 ∶ G𝑚 S the canonical morphism that on real points is
the inclusion R× C×.

Now a Hodge structure is a finite rank abelian groupHZ along with an
action 𝜎 of the real algebraic group S onHR ≔ HZ ⊗R. We will say that
(HZ ,𝜎) is pure of weight 𝑘 if the action of 𝜎𝑤(𝑡) onHR is action by 𝑡𝑘 for
any 𝑡 ∈ R×.

3.1.2. An action of S(C) ≅ C× ×C× onHC ≔ HZ ⊗C is specified by the
decomposition

HC = ⨁
𝑝,𝑞∈Z
H𝑝,𝑞, H𝑝,𝑞 = {𝑥 ∈ HC | ∀(𝑢, 𝑣) ∈ S(C), (𝑢, 𝑣)𝑥 = 𝑢−𝑝𝑣−𝑞𝑥}.

This representation is real just in caseH𝑞,𝑝 = H𝑝,𝑞. Hence a Hodge
structure can be defined as such a decomposition. This Hodge structure is
of weight 𝑘 if and only ifH𝑝,𝑞 = 0 unless 𝑝 + 𝑞 = 𝑘.

This decomposition also specifies a filtration ofHC , called the Hodge
filtration:

⋯𝐹𝑝+1H ⊂ 𝐹𝑝H ⊂ ⋯ ⊂ HC ,

given by

𝐹𝑝H ≔ ⨁
𝑟≥𝑝,𝑠∈Z
H𝑟,𝑠.
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The Hodge structureH is pure of weight 𝑘 just in case 𝐹 𝑞H ∩ 𝐹𝑝H = 0
whenever 𝑝 + 𝑞 = 𝑘 + 1.

3.1.3 Example. Define a Hodge structure

Z(1) ≔ (2𝜋√−1)Z = ker [exp∶ C C×] with Z(1)−1,−1 = Z(1);

this is called the Tate Hodge structure, pure of weight −2. Its tensor powers
are Hodge structures

Z(𝑛) ≔ (2𝜋√−1)𝑛Z ⊂ C with Z(𝑛)−𝑛,−𝑛 = Z(𝑛);

these are pure of weight −2𝑛.

3.1.4 Example. If𝑋 is a compact Kähler manifold, then the holomorphic
Poincaré lemma guarantees a quasi-isomorphism 𝛺𝑋 ≔ 𝛺•𝑋 ≃ C𝑋. Now
the “foolish” filtration

⋯ 𝛺≥𝑛𝑋 𝛺≥𝑛−1𝑋 ⋯ 𝛺𝑋

gives rise to a spectral sequence

𝐸𝑝,𝑞1 = H𝑞(𝑋,𝛺
𝑝
𝑋)⟹ H

𝑝+𝑞(𝑋,C)

whose abutment is the Hodge filtration onH∗(𝑋,C). From Hodge theory,
we know that this spectral sequence degenerates, whence we obtain a
decomposition

H𝑘(𝑋,C) = ⨁
𝑝+𝑞=𝑘
H𝑞(𝑋,𝛺𝑝).

Moreover, one hasH𝑝(𝑋,𝛺𝑞) = H𝑞(𝑋,𝛺𝑝). Thus the singular cohomology
H𝑘(𝑋,Z) is a Hodge structure pure of weight 𝑘.

This is all neatly summarized in the statement that the singular cohomol-
ogy of compact Kähler manifolds (and thus of smooth projective varieties
over C) is “really” valued in the category of Hodge structures.

3.1.5 Notation. Recall

𝛤R(𝑠) ≔ 𝜋−𝑠/2𝛤(𝑠/2)

𝛤C(𝑠) ≔ 2(2𝜋)−𝑠𝛤(𝑠),

so that
𝛤C(𝑠) = 𝛤R(𝑠)𝛤R(𝑠 + 1).
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IfHC is a complex representation of C× × C× (i.e., a C-Hodge struc-
ture), then we write ℎ(𝑝, 𝑞) = dimC H𝑝,𝑞, and

𝛤HC
≔∏
𝑝,𝑞
𝛤C(𝑠 −min{𝑝, 𝑞})ℎ(𝑝,𝑞).

IfHR is a Hodge structure, then one defines

H𝑛,+ ≔ {𝑥 ∈ H𝑛,𝑛 | 𝑥 = (−1)𝑛𝑥};

H𝑛,− ≔ {𝑥 ∈ H𝑛,𝑛 | 𝑥 = −(−1)𝑛𝑥}

and

ℎ(𝑛, +) ≔ dimC H𝑛,+;

ℎ(𝑛, −) ≔ dimC H𝑛,−.

Now

𝛤HR
≔∏
𝑛
𝛤R(𝑠 − 𝑛)ℎ(𝑛,+)𝛤R(𝑠 − 𝑛 + 1)ℎ(𝑛,−)∏

𝑝<𝑞
𝛤C(𝑠 − 𝑝)ℎ(𝑝,𝑞).

In particular, suppose𝑋 a smooth projective variety over a global
field 𝐾, and let 𝑣 be an archimedean place of 𝐾. If 𝐾𝑣 ≅ C, then
H𝑤(𝑋(𝐾𝑣)an,C) admits a C-Hodge structure, and we write

𝐿𝑣(ℎ𝑤(𝑋), 𝑠) ≔ 𝛤H𝑤(𝑋(𝐾𝑣)an,C)(𝑠).

If𝐾𝑣 ≅ R, thenH𝑤(𝑋(𝐾𝑣(𝑖))an,C) admits a Hodge structure, and we
write

𝐿𝑣(ℎ𝑤(𝑋), 𝑠) ≔ 𝛤H𝑤(𝑋(𝐾𝑣(𝑖))an,C)(𝑠).

3.2 Deligne cohomology and Beilinson’s theorem

Deligne cohomology can be thought of as a systematic way of packaging
both ordinary cohomology and the intermediate Jacobians.

3.2.1 Definition. For any integer 𝑝, the Deligne complex Z(𝑝)D is a sheaf
of complexes (or, better, simplicial abelian groups, or, still better, spectra)
on the site of complex analytic manifolds defined as the homotopy fiber
product:

Z(𝑝)D ≔ Z(𝑝) ×ℎC 𝛺
≥𝑝.

Its cohomology groups on a compact complex analytic manifold𝑋 are
the Deligne cohomology groups:

H𝑞D(𝑋,Z(𝑝)) ≔ H
𝑞(𝑋,Z(𝑝)D).
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3.2.2. Equivalently, Z(𝑝)D is the fiber of the natural map Z(𝑝) C/𝐹𝑝𝛺.
One can form an explicit complex of sheaves of abelian groups on a

complex analytic manifold that represents Z(𝑝)D:

0 Z𝑋(𝑝) 𝒪𝑋 𝛺1𝑋 ⋯ 𝛺𝑝−1𝑋 0.

3.2.3 Example. Of course Z(0)D = Z, and so

H𝑞D(𝑋,Z(0)) ≅ H
𝑞(𝑋,Z).

3.2.4 Example.The map

0 Z(1) 𝒪𝑋 0

1 1 𝒪×𝑋 1

exp exp

is an equivalence exp∶ Z𝑋(1)D ∼ 𝒪×𝑋[−1], and so

H𝑞D(𝑋,Z(1)) ≅ H
𝑞−1(𝑋,𝒪×𝑋).

In particular, note thatH2D(𝑋,Z(1)) ≅ Pic(𝑋), and we have an exact
sequence

0 𝐽1(𝑋) H2D(𝑋,Z(1)) NS(𝑋) 0.

3.2.5 Example.There is an equivalence

Z𝑋(2)D ≃ [𝑑 log∶ 𝒪×𝑋 𝛺1𝑋] [−1].

One can show thatH2D(𝑋,Z(2)) is the group of line bundles with holomor-
phic connection.

3.2.6. The long exact sequence of the fiber gives

H𝑞−1(𝑋,Z(𝑝)) H𝑞−1(𝑋,C)
𝐹𝑝H𝑞−1(𝑋,C)

H𝑞D(𝑋,Z(𝑝)) H
𝑞(𝑋,Z(𝑝)) H𝑞(𝑋,C)

𝐹𝑝H𝑞(𝑋,C)
.

When 𝑞 < 2𝑝, the map on the right is an injection, so we have a short
exact sequence

0 𝐽𝑝H𝑞−1(𝑋,Z(𝑝)) H𝑞D(𝑋,Z(𝑝)) H
𝑞(𝑋,Z(𝑝)) 0.

When 𝑞 = 2𝑝, we get a short exact sequence

0 𝐽𝑝(𝑋) H2𝑝D (𝑋,Z(𝑝)) Hdg𝑝(𝑋) 0.
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If𝑋 is a smooth projective variety over a global field𝐾, then for any
archimedean place 𝑣 of 𝐾, we write

H𝑞D(𝑋𝑣,R(𝑝)) ≔
{
{
{

H𝑞D(𝑋𝑣,R(𝑝)) if 𝑣 is complex;

H𝑞D(𝑋𝑣 ⊗𝐾𝑣 𝐾𝑣(𝑖),R(𝑝))
𝐶2 if 𝑣 is real,

where 𝐶2 acts via de Rham conjugation.

3.2.7Theorem (Beilinson).

ord𝑠=𝑚𝐿𝑣(H𝑤(𝑋), 𝑠)−1 = dimR H𝑤+1D (𝑋𝑣,R(𝑤 + 1 −𝑚)).

3.2.8 Definition. Suppose𝑋C a smooth complex projective variety.
Consider the Fréchet algebras 𝐶∞(𝑋anC ,R) and 𝐶

∞(𝑋anC ,C); using a
topologised version of the Hochschild complex, THcts ⊗C, we obtain an
identification

TP(𝑋C) ⊗C ≃ TPcts(𝐶∞(𝑋anC ,C)) ⊗C,

and we define

TPR(𝑋C) ⊗C ≔ TPcts(𝐶∞(𝑋anC ,R)) ⊗C.

Now we have a natural 𝜆-algebra structure on all these invariants, and we
define 𝛩0 as the generator of the 𝜆 operations, so that

𝑘𝛩0 = 𝜆𝑘.

Now we select the map

(2𝜋𝑖)𝛩0 ∶ TPR(𝑋C) ⊗C TP(𝑋C) ⊗C.

Recall that we have the map TC(𝑋C) TP(𝑋C). We form the
homotopy pullback

Pan(𝑋C) ≔ ((TC(𝑋C) ⊗C) ×ℎTP(𝑋C)⊗C, (2𝜋𝑖)𝛩0
TPR(𝑋C) ⊗C) [1].

For a smooth real projective variety𝑋R , define

Pan(𝑋R) ≔ Pan(𝑋C)𝐶2 ,

where 𝐶2 acts on the coefficients.
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There are two domains of interest:

𝐸𝑑 = {(𝑛, 𝑗) | 𝑛 ≥ 0, 0 ≤ 2𝑗 − 𝑛 ≤ 2𝑑}

and
𝐴𝑑 = {(𝑞,𝑚) | 0 ≤ 𝑞 ≤ 2𝑑, 𝑚 ≤ 𝑞/2}

3.2.9 Proposition.There are isomorphisms

𝜋𝑛(Pan(𝑋C))𝛩0=𝑗 ≅ H
2𝑗+1−𝑛
𝐷 (𝑋C ,R(𝑗 + 1))

and
𝜋𝑛(Pan(𝑋R))𝛩0=𝑗 ≅ H

2𝑗+1−𝑛
𝐷 (𝑋C ,R(𝑗 + 1))

for (𝑛, 𝑗) ∈ 𝐸𝑑 (else the left side vanishes).
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