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We’ll give you a complex, and we’ll give it a name. — A. BIRD

These are notes for the “Basic Notions Seminar/Faculty Colloquium,” 30 November 2009, organized by S.-T.
Yau at Harvard. The standard caveats apply here: (1) These notes are very informal, and most proofs are sketched
or omitted completely; even when I’m giving details, I’m skipping details. (2) Some of the ideas appear to be new,
but none of the good ideas are mine, and all interesting results should be ascribed to others. (3) All errors are mine,
and I’m duly ashamed. Really, I am.
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1. The Dedekind zeta function and the Dirichlet regulator

1.1. — Suppose F a number field, with
[F : Q] = n = r1+ 2r2,

where r1 is the number of real embeddings, and r2 is the number of complex embeddings. Write OF for the ring of
integers of F .

1.2. — Here’s the power series for the Dedekind zeta function:

ζF (s) =
∑

0 6=IÃOF

#(OF /I )−s .

1.3. — Here are a few key analytical facts about this power series:
(1.3.1) This power series converges absolutely for ℜ(s)> 1.
(1.3.2) The function ζF (s) can be analytically continued to a meromorphic function on C with a simple pole at

s = 1.
(1.3.3) There is the Euler product expansion:

ζF (s) =
∏

06=p∈SpecOF

1

1− #(OF /p)−s .
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(1.3.4) The Dedekind zeta function satisfies the following functional equation. Set

ξF (s) :=
�

|∆F |
22r2πn

�s/2

Γ
� s

2

�r1

Γ(s)r2ζF (s),

where∆F is the discriminant of F (so that the volume of the fundamental domain of OF in F⊗QR is
p

|∆F |).
Then

ξF (1− s) = ξF (s).
(1.3.5) If m is a positive integer, ζF (s) has a (possible) zero at s = 1−m of order

dm =







r1+ r2− 1 if m = 1;
r1+ r2 if m > 1 is odd;
r2 if m > 1 is even.

Its special value at s = 1−m is

ζ ?F (1−m) = lim
s→1−m

(s +m− 1)−dmζF (s),

the first nonzero coefficient of the Taylor expansion around 1−m.

1.4. — Our interest is in these special values of ζF (s) at s = 1−m. When m = 1, Dirichlet discovered an arithmetic
interpretation of the special value ζ ?F (0), which we will briefly discuss.

1.5. — The Dirichlet regulator map is the logarithmic embedding

ρD
F : O ×F /µF

//Rr1+r2−1 ,

where µF is the group of roots of unity of F . The covolume of the image lattice is the the Dirichlet regulator RD
F .

Theorem 1.6 (Dirichlet Analytic Class Number Formula). — The order of vanishing of ζF (s) at s = 0 is the rank
#µF , and the special value of ζF (s) at s = 0 is given by the formula

ζ ?F (0) =−
#PicOF

#µF
RD

F .

1.7. — Using what we know about the lower K -theory, we have

K0(OF )∼= Z⊕PicOF and K1(OF )∼= O
×
F .

So the Dirichlet Analytic Class Number Formula reads:

ζ ?F (0) =−
#τK0(OF )

#τK1(OF )
RD

F ,

where τA denotes the torsion subgroup of the abelian group A.

Example 1.8. — If F =Q, the ζF (s) is the Riemann zeta function ζ (s). In this case, of course, r1 = 1, and r2 = 0.
The Dirichlet regulator map is the map from a 0-dimensional lattice to a 0-dimensional vector space. Hence RD

Q = 1.
It follows from the functional equation that the simple pole of Γ(s) at s = 1 with residue 1 gives

ζ (0) =−
1

2
.

The Dirichlet Analytic Class Number Formula therefore encodes the observation that the class number of Q is 1,
and Q contains 2 roots of unity.

Of course ζ (s) is nonzero for s = 1−m if m = 2k for an integer k > 0. In fact, the functional equation, combined
with Euler’s computation of ζ (2k) for positive integers k, yields:

ζ (1− 2k) =−
B2k

2k
,
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where the B2k are the Bernoulli numbers, given by the Taylor coefficients:

x

e x − 1
=
∑

m≥0

Bm

x m

m!
.

One has the recursion

Bm =−
m−1
∑

`=0

1

m+ 1

�m+ 1

`

�

B`.

When m = 2k + 1 for an integer k ≥ 0, however, ζ (s) has a zero of order 1 at s = 1− m, and the functional
equation relates the special value ζ ?(1−m) to the value ζ (m), viz.:

ζ ?(−2k) = (−1)k
π2k

22k+1
(2k)!ζ (2k + 1).

There are no classical computations of ζ (2k + 1) yet, though Apéry showed that ζ (3) is irrational.
What, you may ask, is the arithmetic significance of these numbers?

Example 1.9. — Suppose F = Q(
p

2). Then r1 = 2 and r2 = 0. The Dirichlet regulator map is the logarithmic
embedding of a one-dimensional lattice into a one-dimensional vector space, so the covolume is the logarithm of the
fundamental unit: log(1+

p
2).

The class number of Q(
p

2) is 1, and Q(
p

2) contains only 2 roots of unity, so the Dirichlet Analytic Class
Number Formula gives

ζ ?
Q(
p

2)
(0) =−

1

2
log
�

1+
p

2
�

.

In fact, this is part of a general phenomenon. If F =Q(
p
∆) is a quadratic number field of discriminant ∆, then

one may use the Euler product expansion to show that

(1.9.1) ζQ(
p
∆)(s) = ζ (s)L (χ∆, s) ,

where L(χ∆, s) is the L-function of Legendre-Kronecker character χ∆(n) = (∆|n):

L(χ∆, s) :=
∏

0 6=p∈SpecZ

1

1− (∆|p)p−s .

Thus when∆= 2, we are left with the assertion that the L-function

L(χ2, s) =
∏

06=p∈SpecZ

1

1− (−1)
p2−1

8 p−s

vanishes to order 1 at s = 0, and the special value

L?(χ2, 0) = log(1+
p

2).

Example 1.10. — Suppose now F =Q(
p
−5); then r1 = 0, and r2 = 1; so again the Dirichlet regulator is 1, and the

special value of ζQ(
p
−5)(s) at s = 0 is the value. In addition, there are two roots of unity in Q(

p
−5), and its class

number is 2. Hence we are left with

ζQ(
p
−5)(0) =−1,

and thus by the identity (1.9.1),

L(χ−5, 0) = 2.



4 CLARK BARWICK

2. The Borel regulator and the ur-Lichtenbaum conjecture

2.1. — Let us keep the notations from the previous section.

Theorem 2.2 (Borel). — If m > 0 is even, then Km(OF ) is finite.

2.3. — In the early 1970s, A. Borel constructed the Borel regulator maps, using the structure of the homology of
SLn(OF ). These are homomorphisms

ρB
F ,m : K2m−1(OF ) //Rdm ,

one for every integer m > 0, generalizing the Dirichlet regulator (which is the Borel regulator when m = 1). Borel
showed that for any integer m > 0 the kernel of ρB

F ,m is finite, and that the induced map

ρB
F ,m ⊗R : K2m−1(OF )⊗R //Rdm

is an isomorphism. That is, the rank of K2m−1(OF ) is equal to the order of vanishing

dm =







r1+ r2− 1 if m = 1;
r1+ r2 if m > 1 is odd;
r2 if m > 1 is even.

of the Dedekind zeta function ζF (s) at s = 1−m. Hence the image of ρB
F ,k is a lattice in Rdk ; its covolume is called

the Borel regulator RB
F ,m .

Borel showed that the special value of ζF (s) at s = 1−m is a rational multiple of the Borel regulator RB
F ,m , viz.:

ζ ?F (1−m) =QF ,m RB
F ,m .

Lichtenbaum was led to give the following conjecture in around 1971, which gives a conjectural description of QF ,m .

Conjecture 2.4 (ur-Lichtenbaum). — For any integer m > 0,

|ζ ?F (1−m)| =
(2)

#τK2m−2(OF )

#τK2m−1(OF )
RB

F ,m .

(Here the notation =
(2)

indicates that one has equality up to powers of 2.)

2.5. — I have used the word “conjecture” here for historical reasons, but it seems very likely that this result is now
known, and that it is the result of the Voevodsky–Rost Theorem.

Example 2.6. — Let us examine the case F =Q. What we see is that information about ζ -values gives information
about the K -theory, and information about K -groups gives information about ζ -values.

The value of the Borel regulator RB
Q,m for m = 2k is 1. The ur-Lichtenbaum Conjecture thus states that

|B2k |
2k

=
(2)

#K4k−2(Z)

#K4k−1(Z)
.

This result is now known even more precisely: it is known that

|B2k |
4k
=

#K4k−2(Z)

#K4k−1(Z)
,

and, moreover, if
|B2k |
4k
=

ck

dk
, (ck , dk ) = 1,

then the orders of the corresponding K -groups

#K4k−2(Z) =

(

ck if k is even;
2ck if k is odd;

and #K4k−1(Z) =

(

dk if k is even;
2dk if k is odd.
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For m = 2k + 1 for an integer k > 0, the situation requires more care. The Borel regulator is somewhat difficult
to compute. As it happens, up to a multiple of 2, RB

Q,m is the m-fold polylogarithm evaluated on a generator of
K2m−1(Q). The ur-Lichtenbaum Conjecture is then the assertion that

|π2k (2k)!ζ (2k + 1)| =
(2)

#τK4k (Z)

#τK4k+1(Z)
RB

Q,2k+1.

Now the Voevodsky–Rost Theorem implies that for any integer k > 0,

K4k+1(Z) = Z⊕Z/2(k+1)mod 2Z.

Kurihara has shown that Vandiver’s Conjecture is equivalent to the claim that K4k (Z) = 0. Given this, the ur-
Lichtenbaum Conjecture becomes the claim that

|ζ (2k + 1)| =
(2)

RB
Q,2k+1

π2k (2k)!
.

The Vandiver Conjecture further implies that K4k−2(Z) and K4k−1(Z) are each cyclic. Thus the Vandiver Conjec-
ture is equivalent to the following computation of K∗(Z):

Ki (Z) =



































Z if i = 0;
Z/2Z if i = 1;
Z/2k mod 2ckZ if i = 4k − 2, k > 0;
Z/2k mod 2dkZ if i = 4k − 1, k > 0;
0 if i = 4k , k > 0;
Z⊕Z/2(k+1)mod 2Z if i = 4k + 1, k > 0.

3. Étale K -theory and the Quillen–Lichtenbaum conjecture

A consequence of the main conjecture of Iwasawa theory is the following.

Theorem 3.1 (Mazur–Wiles, Wiles). — Suppose F a totally real number field, and suppose m even. Then

|ζF (1−m)| =
(2)

#H 2
ét
(OF ,Z(m))

#H 0
ét(F ,Q/Z(m))

Theorem 3.2 (Kolster). — Suppose F is an abelian number field. Then

|ζ ?F (1−m)| =
(2)

#H 2
ét
(OF ,Z(m))

#H 0
ét(F ,Q/Z(m))

RB
F ,m .

Results such as those above suggest that the Dedekind zeta function has to do with étale cohomology. Hence one
my suspect that the ur-Lichtenbaum Conjecture has a cohomological interpretation. This is indeed true.

But let us recall the famous computation of Quillen.

Theorem 3.3 (Quillen). —

Ki (Fq )∼=







Z if i = 0;
0 if i = 2m and m ≥ 1;
Z/(q m − 1)Z if i = 2m− 1 and m ≥ 1.

3.4. — For i ≥ 1,

Ki (Fq )∼=

(

H 2
ét
(Fq ,Z(m)) if i = 2m;

H 0
ét
(Fq ,Q/Z(m)) if i = 2m− 1.
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This is compatible with the formula

ζFq
(s) =

1

1− q−s .

so that

ζFq
(−m) =−

#H 2
ét
(OF ,Z(m))

#H 0
ét(F ,Q/Z(m))

.

What, you may be tempted to ask, accounts for the shift by one here?

3.5. — The assignment K : X � //K(X ) defines a presheaf of spectra on the category (Sch/S) of noetherian
schemes of finite Krull dimension over a fixed noetherian base scheme S of finite Krull dimension. For any integer
m > 0, one may also consider the presheaf of spectra on (Sch/S) given by mod m K -theory

K /m : X � //K(X ,Z/mZ) .

We may ask whetherK (or one of its relatives) satisfies hyperdescent with respect to various interesting topolo-
gies τ on (Sch/S). If it does, then one has a convergent descent spectral sequence

H i
τ
(X ,K j ) =⇒K j−i (X ).

The answer depends a lot on the topology.

Theorem 3.6 (Thomason). — The presheaves K and K /m satisfy Zariski — and even Nisnevich — descent on the
category of noetherian S-schemes of finite Krull dimension. If the prime ` is invertible on S, then the Bott-inverted mod
`ν K-theoryK /`ν[β−1] satisfies étale descent on this category. Likewise, the presheafK ∧HQ satisfies étale descent.

3.7. — NeitherK norK /m satisfies étale hyperdescent, even if m is invertible on the base scheme S. LetK ét and
K ét/m denote the hypersheafification of these presheaves on the small étale site of S. There is, nevertheless, the
following conjectural generalization of the ur-Lichtenbaum Conjecture.

Conjecture 3.8 (Quillen–Licthenbaum). — Suppose m invertible on S, and suppose d the étale cohomological dimen-
sion (with Z/mZ coefficients) of S. Then the natural morphism

K /m //K ét/m

induces isomorphisms

Ki (S,Z/mZ) //H−i
ét
(S,K ét/m)

for i > d .

3.9. — Let’s see how this conjecture plays out in the case of a field. First, we have the following result of Suslin.

Theorem 3.10 (Suslin). — Suppose F an algebraically closed field of characteristic not `. Then

K(F )∧
`
' ku∧

`
.

Conjecture 3.11 (Quillen-Lichtenbaum, `-complete version for fields). — Suppose F a field (not necessarily a num-
ber field), not of characteristic `, of (`-adic) cohomological dimension d . Suppose GF the absolute Galois group of F . The
canonical morphisms

K(F )'K
�

F
�GF //K

�

F
�hGF

have equivalent (d + 1)-connective covers after `-completion; that is, the homomorphisms

Ki (F )
∧
`

//πi

�

�

K
�

F
�∧

`

�hGF
�

are isomorphisms for i > d .
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3.12. — There is a well-known homotopy fixed point spectral sequence

H−s
�

GF ,πt

�

ku∧
`

��∼=H−s
�

GF ,πt

�

K
�

F
�∧

`

��

=⇒πs+t

�

�

K
�

F
�∧

`

�hGF
�

,

which therefore converges to Ks+t (F )
∧
`

for s+t > d if the Quillen–Lichtenbaum Conjecture holds. One can truncate
this spectral sequence, leading us to the following refinement of the Quillen–Lichtenbaum Conjecture.

Conjecture 3.13 (Beilinson-Lichtenbaum). — There is a convergent spectral sequence

E2
s ,t =

(

H−s (GF ,πt (ku∧
`
)) if s + 2t ≥ 0;

0 else,

whose abutment is Ks+t (F )
∧
`

.

3.14. — This last conjecture offers specific control over all the K -groups, but there seems to be no filtration on the
spectrum K(F )∧

`
yielding this spectral sequence, and no interpretation of the E2 page as arising from the composition

of two functors.

4. Equivariant stable homotopy theory and Carlsson’s conjecture

4.1. — Suppose F of finite (`-adic) cohomological dimension, and suppose X a geometrically connected variety
over F . One may consider X with the trivial GF action, yielding a GF -equivariant E∞ ring spectrum K (AF ;X )
whose Green functor π∗K (AF ;X ) assigns to any orbit (GF /H ) the K -theory of the category RepX [H ] of variations
of representations of H over X ; in particular,

π{1}∗ K (AF ;X )∼=K∗(X ) and πGk
∗ K(AF ;X )∼=K∗RepX [GF ].

One can also use the canonical action of GF on X :=X ×Spec F Spec F to obtain a GF -equivariant E∞ ring spectrum

K
�

AF ;X
�

whose Green functor π∗K
�

AF ;X
�

assigns to any orbit (GF /H ) the K -theory of X ×Spec F Spec
�

F
H�

.

In particular,

π{1}∗ K
�

AF ;X
�∼=K∗

�

X
�

and πGF
∗ K

�

AF ;X
�∼=K∗ (X ) .

Base change gives an equivariant E∞ morphism

α : K (AF ;X ) //K
�

AF ;X
�

.

If ` is a prime with 1/` ∈ OX , then by abuse, write Z/` for the constant Green functor for GF at Z/`. Now the mod
` rank yields a triangle:

K (AF ;X )

%%KKKKKKKK
α // K

�

AF ;X
�

yyrrrrrrrr

H (Z/`)

We can therefore form the completion (or derived completion in Carlsson’s terminology) of both K (AF ;X ) and
K
�

AF ;X
�

along H (Z/`), yielding an equivariant E∞ morphism

α∧
`

: K (AF ;X )∧
`

//K
�

AF ;X
�∧

`
.

Carlsson’s objective is to study this morphism in the fully equivariant context, thereby eliminating the ad hoc
cohomological dimension bound in the `-complete Quillen–Lichtenbaum conjecture.
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Theorem 4.2 (——, partly with Grace Lyo, conjectured for fields by Carlsson, [?, 4.3.9])
The morphism α∧

`
of the completions is an equivalence of GF -equivariant E∞ ring spectra. In particular, the GF -fixed

point spectrum
�

K
�

AF ;X
�∧

`

�GF
coincides with the `-adic completion K (X )∧

`
, so that the GF -fixed points of α∧

`
are an

equivalence
�

K (AF ;X )∧
`

�GF 'K (X )∧
`

.

I will shortly turn to a description of the proof of this result. But before I do, observe that it remains to find an
interpretation of the left hand side in this formula.

Conjecture 4.3. — If F is of `-adic cohomological dimension d , then the GF -fixed point spectrum
�

K (AF ;X )∧
`

�GF and

the homotopy fixed point spectrum
�

K
�

X
�∧

`

�hGF
have naturally equivalent (d + 1)-connective covers.

4.4. — It is useful to have a clear idea of what sort of objects we are dealing with. Classically, Mackey functors are
additive functors indexed on a Burnside category, obtained by taking a group completion of a semi-additive cate-
gory of spans. The∞-categorical set-up is slightly more complicated than the classical description of the Burnside
category.

Suppose G a profinite group. A G-space K will be said to be finite if it has finitely many components and if the
isotropy subgroup is open. Denote by B [(G)fin the full subcategory of the∞-topos B [(G) of G-sets spanned by the
finite G-spaces.

Define the semiexcisive Burnside∞-categoryB+G in the following manner.

(4.4.1) The objects are finite G-spaces.
(4.4.2) A morphism K // M of finite G-spaces is a diagram

K Loo // M

in B [(G).
(4.4.3) Given two such diagrams

K Loo // M and M Noo // P,

their composition is defined (up to a contractible choice) as the top of the pullback

L×M N

�������
��?????

L

�������

��????? N

�������

��?????

K M P.

4.5. — Observe that the product −×− in B [(G)fin defines a symmetric monoidal structure onB+G ; note that the
product of is not the cartesian product inB+G ; as a result, let us denote this symmetric monoidal structure by �.

4.6. — Note also that there are two faithful, symmetric monoidal functors

` : B [(G)fin,op //B+G and r : B [(G)fin //B+G

that are each the identity on objects. Now a (spectral) Mackey functor for G is a functor F : B+G //Sp satisfying
the following properties.
(4.6.1) The functor F sends the zero object ofB+G to an initial object.
(4.6.2) The functor `?F : B [(G)fin,op // D sends pushout squares of finite G-spaces to pushout squares in D .
(4.6.3) The functor r ?F : B [(G)fin // D sends pushout squares of finite G-spaces to pushout squares in D .

The∞-category of Mackey functors for G will be denotedMackG .
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4.7. — By construction, MackG is a presentable, stable ∞-category. The full subcategory MackG,≥0 generated
under extensions and colimits by the essential image of the functor

Σ∞ : Adm(B+G ,S ) //Adm(B+G ,Sp)'MackG

defines an accessible t -structure onMackG ; this t -structure is both left and right complete. The heartMack♥G of this
t -structure is an abelian category of “classical” Mackey functors for the 1-truncation of G; there are corresponding
functors πn :MackG

//Mack♥G .

4.8. — Given a Mackey functor A for G, one can define associated functors

A? := `?M : B [(G)fin,op //Sp and A? := r ?A : B [(G)fin //Sp ,

the first of which is contra-excisive, the second of which is excisive. This defines two “forgetful” functors

(−)? :MackG
//Excop(B

[(G)fin,op,Sp) and (−)? :MackG
//Exc(B [(G)fin,Sp) .

Thus a Mackey functor for G splices together a homology theory for finite G-spaces together with a cohomology
theory for finite G-spaces using a base-change formula; indeed, we see immediately that for any Mackey functor A
for G and any pullback square

L×M N
f

������� g

��?????

L

g ��????? N .

f�������

M

of B [(G)fin, one must have a canonical homotopy

f ? g? ' g? f ? : A(L) //A(N ) .

4.9. — The tensor product −⊗− of Mackey functors is given by the Day convolution product, and it precisely
codifies the interaction of the pullback and pushforward morphisms with the multiplicative structure that one sees
in algebraic K -theory. The∞-categoryMackG is closed symmetric monoidal with respect to the Day convolution
product; consequently, there is a rich theory of A∞ and E∞ ring spectra inMackG .

A Green functor is ordinarily defined as a monoid in the symmetric monoidal category of Mackey functors.
But our Mackey functors are homotopical in nature; so instead we should ask for a homotopy coherent monoid. A
Green functor for G is an A∞ algebra in the symmetric monoidal categoryMackG of Mackey functors over S. More
generally, for any operadP , one may define aP -Green functor for G simply as aP -algebra inMackG .

Now the data of a Green functor is the data of a Mackey functor A for G and a homotopy-coherently associative
pairing

A(L)∧A(M ) //A(L�M )
for every pair of finite G-spaces L and M , and a unit morphism

S0 //A(?) .

There are in particular two functors attached to A, namely,

A? : B [(G)fin,op //Sp and A? : B [(G)fin //Sp ,

and the homotopy associative and unital pairing on A can be viewed as two morphisms of spectra

A?(L)∧A?(M ) //A?(L�M ) and A?(L)∧A?(M ) //A?(L�M ) ,

each of which is natural in L and M .
We internalize this external tensor product by pulling back along the diagonal functor; hence for any object

K ∈ B [(G)fin, the spectrum A(K) is an A∞ algebra. The pullback functors all preserve this structure, so

A? : B [(G)fin,op //Sp

can be viewed as a presheaf of A∞ ring spectra.
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On the other hand, the pushforward maps all preserve the external product, but not necessarily its internaliza-
tion. It therefore follows that for any morphism f : L // M , the morphism

f? : A?(L) //A?(M )

is a morphism of A?(M )-modules.

4.10. — Let us comment on the structure of the proof, as it is relevant to what follows. Assume from now on that F
is perfect, and X is smooth. (This is not strictly necessary, but it simplifies the presentation.) D. Grayson introduced
a filtration on the K -theory of X :

. . . //W 2(X ) //W 1(X ) //W 0(X ) =K(X ),

whose successive quotients W j/ j+1(X ) are (at least rationally) pure of weight j . This filtration is a descending se-
quence of (E∞) ideals in K(X ). Moreover, the filtration on K∗(X ) given by the spectral sequence

E p,q
2 =πp+qW q/q+1(X ) =⇒Kp+q (X )

coincides rationally with the γ -filtration on K∗(X ).
In particular, the first quotient W 0/1(X ) is HZ, and in general, the spectra W j/ j+1(X ) are ( j + 1)-truncated, and

it follows from work of Suslin that
π2 j−iW

j/ j+1(X )∼=H i
mot (X ,Z( j )) .

For our purposes here, we shall regard this left hand homotopy group as the definition of motivic cohomology,
despite the fact that there is another “official” definition.

The key point is that: (1) this filtration can be defined equivariantly, and (2) one can use ideas of equivariant
derived algebraic geometry to study the map α∧

`
on the various quotients.

Example 4.11. — Let us now return to the Dedekind zeta function of a number field F . In that case, there is a
motivic reformulation of the Lichtenbaum conjecture:

|ζ ?F (1−m)| =
(2)

#τH 2
mot (OF ,Z(m))

#τH 1
mot (OF ,Z(m))

RB
F ,m .

To avoid the ambiguity at 2, one should use the Beilinson regulator instead.

5. Beilinson’s conjectures on special values of L-functions

5.1. — Suppose now that F is a number field and that X is a smooth proper variety of dimension n over F ; denote
by S its places of bad reduction. Write X := X ×Spec F Spec F . Now for every nonzero prime p ∈ SpecOF , we may
choose a prime q ∈ SpecOF lying over p, and we can contemplate the decomposition subgroup Dq ⊂ GF and the
inertia subgroup Iq ⊂Dq .

Now if ` is a prime over which p does not lie and 0 ≤ i ≤ 2n, then the inverse φ−1
q of the arithmetic Frobe-

nius φq ∈ Dq/Iq acts on the Iq -invariant subspace H i
�

X ,Q`

�Iq of the `-adic cohomology H i
�

X ,Q`

�

. We can
contemplate the characteristic polynomial of this action:

Pp (i , x) := det
�

1− xφ−1
q

�

�

H i
�

X ,Q`

�Iq

�

∈Q`[x].

One sees that Pp (i , x) does not depend on the particular choice of q .

Conjecture 5.2 (Serre). — The polynomial Pp (i , x) has integer coefficients that are independent of `.

5.3. — This conjecture follows from the Weil conjectures if p /∈ S, and this is known for almost all p. We now
assume this conjecture for all nonzero primes p ∈ SpecOF . This permits us to define the local L-factor at the corre-
sponding finite place ν(p):

Lν(p)(X , i , s) :=
1

Pp (i , p−s )
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5.4. — We can also define local L-factors at infinite places. For this, we define Gamma factors

ΓR(s) :=π
−s/2Γ

� s

2

�

and ΓC(s) :=ΓR(s)ΓR(s + 1) = 2(2π)−sΓ(s),

and for any infinite place ν corresponding to an embedding σ : F //C , we set

Lν (X , i , s) :=







∏

0≤m<i/2
ΓC(s −m)h m,i−m

if i is odd

ΓR

�

s − i
2

�h+
ΓR

�

s − i
2 + 1

�h− ∏

0≤m<i/2
ΓC(s −m)h m,i−m

if i is even,

where h m,i−m is the Hodge number of H i
�

(X ×Spec F ,σ SpecC)(C),Q
�

, and h+ and h− are the dimensions of the
(−1)i/2 and the −(−1)i/2 eigenspaces of H i/2,i/2, respectively.

5.5. — With these local L-factors, we define the L-function of X via the Euler product expansion

L(X , i , s) :=
∏

06=p∈SpecOF

Lν(p)(X , i , s);

this product converges absolutely for ℜ(s)� 0. We also define the L-function at the infinite prime

L∞(X , i , s) :=
∏

ν |∞
Lν (X , i , s)

the full L-function
Λ(X , i , s) = L∞(X , i , s)L(X , i , s).

5.6. — Here are the expected analytical properties of the L-function of X .
(5.6.1) The Euler product converges absolutely for ℜ(s)> i

2 + 1.
(5.6.2) L(X , i , s) admits a meromorphic continuation to the complex plane, and the only possible pole occurs at

s = i
2 + 1 for i even.

(5.6.3) L
�

X , i , i
2 + 1

�

6= 0.
(5.6.4) There is a functional equation

Λ(X , i , s) = ε(X , i , s)Λ(X , i , i + 1− s).

Conjecture 5.7 (Beilinson). — Suppose r > i/2+ 1. Then the Beilinson regulator ρ induces an isomorphism

ρ⊗R : H i+1
mot (X ,Z(r ))⊗R // H i+1

D (X ,R(r )) ,

and the image of the induced homomorphism det H i+1
mot (X ,Z(r )) // det H i+1

D (X ,R(r )) is equal to

L?(X , i , i − r + 1) ·Bi ,r ,

where
Bi ,r = det

�

H i
B (XR,Q(r − 1))

�

⊗ det
�

F r H i
dR(X )

�∨

is the Q-structure guaranteed by Hodge theory.
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