BOREL'S COMPUTATION OF THE COHOMOLOGY OF
SL(OF)

C. BARWICK

1. DECOMPOSING SYMMETRIC SPACES

1.1. Suppose F a number field with ring of integers . Our aim in this
talk and its sequel is to compute the real cohomology of the group

SL(0)) =colim SL (O})

as a subgroup of
SL(F) = colim SL_(F)

n—0o0

This can be expressed as a limit
H*(SL(0%),R) = lim H*(SL, (0;),R),

in the category of graded real vector spaces.

1.2. In particular, let us consider, for every integer 7, the Weil restriction

along with the image I, € G, (Q) of SL_(&/) under the canonical isomor-
phism SL (F) = G,(Q). If S is the set of archimedean places of F (7, real

places and 7, complex places), then the real points of G, are given by
G,R)=] [6G,.(R),
v€ES
where, if v is a real place, then G, (R) = SL,(R), and if v is a complex
place, then G, (R)=SL, (C).

1.3. One sees that the symmetric space

of maximal compact subgroups of the Lie group G,(R) decomposes as a

product
Xn = HXn,v
vES
of symmetric spaces
X,, =G, (R)/K

n,v n,v
1
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of maximal compact subgroups of the Lie group G, ,(R).

Example 1.4. Suppose F = Q. Then r, =1, and », = 0. The Weil restric-
tion is trivial here, as is our decomposition of X :

X, :=SL (R)/SO, .

This can be thought of as the space of positive-definite 7 X 7 matrices of
determinant 1.

Example 1.5. Suppose F = Q(+/2). Then r, = 2, and r, = 0. The Weil
restriction is more interesting here, and the symmetric space decomposes
as

X, =SL (R)/SO, xSL, (R)/SO,,.
Example 1.6. Suppose F = Q(+/—=5). Then r, =0, and r, = 1. So here the

symmetric space does not decompose:

X, =SL (C)/SU,

2. INVARIANT DIFFERENTIAL FORMS AND RELATIVE LIE ALGEBRA
COHOMOLOGY

2.1. The key to our study will be the algebra
« .— %R
I =0

of G, (R)-invariant differential forms on X, . Corresponding to our de-
composition of the symmetric space above, we have a decomposition

I= ®Iw, where I = Q;"’”(R).

n,v

v€ES
2.2. More generally, if g, is the Lie algebra of G (R), and if M is a g-
module, then G,(R) acts on the space Qy (M) of M-valued differential
forms, and we may speak of the algebra

(M) := 8y (M)*®

of G (R)-invariant M-valued differential forms on X . Suppose now that
g, 1s the Lie algebra associated with the Lie group G, ,(R), and suppose
M, ,ag, -module.If the g-module M decomposes as M = Q) s M., then
we have a decomposition

=L, (M), where T (M,)=0 (M,)5%®),

vES
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2.3. Now we aim to relate this algebra to the relative Lie algebra cohomol-
ogy. We begin by defining a complex

C(g,,,3M,) = Hom(A'g, ., M,).
This is a graded algebra, and it comes equipped with the Koszul differential
d: CU(g, s M,) — CT(g, ;M)
given by
df(xg...,x,) ::Z(— Yx; f (x5 - s XjyennsX,)
—I—Z D £([ (EZETE xo,...,fi,...,fj,...,xq);
i<j

now d* =0 and H'(g,, ,;M,) is the cohomology of this complex. This is
the Lie algebra cobomology ot g,, .

2.4. Now for any element x € g,, ,, there is an endomorphism
. €10, M,) — C(g, 5 M,)
and a linear map
t: C(g, i M,) — CT (g, i M,)
defined by
ﬁxf(xl,...,xq) = xf(x,.. +Zf Xiyeeos [X55%]5ens xq);

o f (e, _g) = f(2%0500 %, )

The differential above is in fact the unigue differential d such that for any
element x €9, , one has

U, =di +..d.

2.5. Suppose now £, , the Lie algebra associated with the maximal com-
pact K, . Denote by C*(g, ¢, ,;M,) the subcomplex of C*(g, ;M)

consisting of elements f such that for any x €€, _, one has

9. f=0 and ( f=0.

(This is compatible with the differential.) This subcomplex can be identi-
fied with the space

Hom(A*(gn,v/En,v)’M@)Enlv - Hom(A*(gn,v/En,’u)’Mfu)’
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where the action of €, is the adjoint representation, so that the above is
the subspace of elements f such that

Zf(xl,...,[x,xl-],...,xq):xf(xl,...,xq)

for any x € €, . The cohomology of this subcomplex is the relative Lie
algebra cohomology H'(g,, ., s M,,).

7,07
2.6. It is a straightforward matter to see that evaluation at K, e defines

isomorphisms

I (M)=CYg,,t,,sM,) andthus I (M)=(X)C(g,,t, M)

n,v v
vES

2.7. Now contemplate a Cartan decomposition

gn,'v = En,v @ pn,w‘
Then one may identify

CU(g, ¢, M,)= Hom(Aq(pn’v),Mv)% C Hom(A"(p, ), M,).

7,07

Now since [p ] C¢,,, onededuces thatd =00on C*(g, ., ¢, ,; M)

n,v? pn,v v

2.8. An immediate corollary of this is that the natural differential on
I' (M,)—and thus on I’ (M) itself — is zero.
Example 2.9. When F = Q, we have the usual “polar” Cartan decompo-
sition

sl (R)=so0, ®p,,

where p_ is the subspace of symmetric traceless matrices.

Example 2.10. When F = Q(+/2), we double the Cartan decomposition
to obtain

sl,(R)®sl,(R)=s0,®s50,®p,®p,,.
Example 2.11. When F = Q(+/—5), we have the Cartan decomposition
sl,(C)=su,®v—1su,;

here su_ is the subspace of traceless antihermitian matrices, and v/—1 su
is the subspace of traceless hermitian matrices.
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3. INVARIANT DIFFERENTIAL FORMS AND CONTINUOUS
COHOMOLOGY

3.1. For any natural number g, a continuous real q-cochain on G, is a
continuous function N, G, , = G? — R. There is a natural coboundary

operator, so we obtain a complex C.(NG, ;R) and the continuous cobo-
mology
H'(G, ,;R) :i= H'(C,(NG, ;R)).

7,07 7,07

We wish to relate this to the algebra of invariant differential formson X _.

3.2. Suppose (g;,.--,g,) € G7 _ a tuple. Then we may define a geodesic
simplex
Aq(gl’ T gq) - Xn,v

in the following manner. If g = 1, then we define Al(g,) as the geodesic
arc connecting {K,, .} to g,{K, }; for ¢ > 1, we define A?(g,,..., g ) as

the geodesic cone from {K,, ,} to g A7"!(g,,..., g,)-

3.3. Suppose now that ¢ isa G,, (R)-invariant differential g-formon X, _.
Now one may obtain a continuous real g-cochain j(¢) on G, in the
following manner. For any tuple (g;;...,g,) € G? _, set

)8 g i= f .

A1(gyyes8y)
This recipe defines a graded homomorphism

j:I —C/(NG,;R).

7,07

In fact, we claim that this map ; is an isomorphism, called the van Est
isomorphism.

3.4. To begin the proof of this, let us consider the simplicial space £EG,
given by £, G, , = G7*!. The universal G-bundle can be modeled as

p:EG,,— NG, , where p(go,...,gq):: (gogl_l,...,gq_lg;),

a smooth map of simplicial manifolds. It is a straightforward matter to
show that p induces an isomorphism

C:(NGn,v) = C:(E Gn,fu)Gn’pa
where the action of G, , on C*(EG,, ) is given by
(rv)(&o>---> &) = Y&+ -5 8Y)-
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3.5. Now we may define a chain map
]: QXn,u - C:(EGn,v)

in the following manner. If g = 0, then we define ZO( &) = g K, .}

for g > 0, we define Zq(go, .+»&,) as the geodesic cone from g "'{K,, ,} to
A?!(g,,..., g,)- Now define

JoXgng)= [ o

A

This is a chain map by Stokes, and it is G, -equivariant by the construc-
tion of the simplices A”(g,, .., g .)-

3.6. Why now is this map an equivariant quasi-isomorphism? There are

two possible ways of proving this. One may show, as in Hochschild-
Mostow, each of Qy, and C*(EG,, ) are continuous injective resolutions

of Rasa G, ,-module. A perhaps simpler, or at any rate more explicit, ap-
proach is to recognize it as a special case of a simplicial de Rham theorem.

4. RELATIVE LIE ALGEBRA COHOMOLOGY AND THE COMPACT
TWIN SYMMETRIC SPACE
4.1. On the other hand, we have the compact twin X¢ of X, , defined in
the following manner. Select a maximal compact subgroup G¢ _ C G, (C)
containing K, , and define X¢ := G¢_/K, . Thus if v is a real place,
then
X< =SU,/s0,,
and if v is a complex place, then
Xt =(SU, xSU,)/SU, =SU, .
By an averaging argument, these compact symmetric spaces have the prop-
erty that
R).

c .
n,v’ N0

i (XC i R) 2 HI(Q)) 2 H(g) ¢
On the other hand, the Cartan decorifposition of g,  becomes
g, =t ev-1p,,,
so we may define an isomorphism of complexes
CH(8,00 8, s R)Z (AP )ore = (A (V=1p, )" ) = CH (g 18, 3R)
by w — (vV=1)1w.
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4.2. Bott periodicity thus gives computations of the relative Lie algebra
cohomology stably:

= {H*(SU/SO;R) > A{g,, deg(o,)=2i+1} ifF,=C;

lim H* B . .
1m (gnv n,v HX(SU,R) o~ A*{Ti’ deg('ri)=4l —|—1} lfFv =R.

n—00

4.3. To summarize, here’s a diagram:

+R) — H (X, ;R)

7,07

H'(C/(EG, )%) —— H(G, ,iR)

7,07

In this diagram, all the objects are naturally dgas with zero differential.
Bott periodicity gives an explicit stable description of H'(G, ,;R). Taking

n,v?
the tensor product of this diagram over all places v € § yields the compu-
tation

lim I' = (A*{r;, deg(t;) =4 + 1})®r1 ® (A*{o,, deg(o;)=2i + 1})®72

n—0o0

where 7, is the number of real places of F, and 7, is the number of complex
places of F.

Example 4.4. When F = Q, we have r, =1, and r, = 0. So we obtain
lim I = A*{r;, deg(7;) =41 + 1}

n—0o0

Example 4.5. When F = Q(+/2), we have , = 2, and 7, = 0. So we obtain
lim I' = (A"{z;, deg(r,;) =4i + 1})®2

Example 4.6. When F = Q(+/—5), we have r, =0, and r, = 1. So we

obtain
lim I' = A*{o;, deg(0;) =2i +1}

n—00

5. THE REAL COHOMOLOGY OF SL(0})

5.1. So far our discussion has made no mention of the arithmetic sub-
group I’ € G (R). But the inclusion I') < G, (R) manifestly induces a
map

7. H(G,(R);R) — H'(T',;R)
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Our goal is to show that if 7 is a natural number such that 7 such that
q < |(n—1)/4], then the map j, above induces an isomorphism

H?(G,(R);R)=ZH/(T ,R).
This then gives isomorphisms

v€eS

= (A1, deg(t;) =4i +1})*" ® (A*{o;, deg(o;) =2i +1})®".

5.2. To understand why this map can be expected to be an isomorphism
in a stable range, let us write

z] Iz

I I (¢(T'\G,)
H:(G,R) HI(C,:R)

We can, for example, use the idea employed in our discussion of the van
Est isomorphism to reinterpret the homomorphism j, as a map

Jn: L, — H'(T;R)

in the following manner. Suppose now that ¢ is a G, (R)-invariant differ-

ential g-form on X,. Now one may obtain a continuous real g-cochain

J.(¢) on I, in the following manner. For any tuple (y,,...,y,) €', set

@ Fienryy) = f .

Al(yp5menly)

6. THE RANK OF K_(Op)

6.1. Asshown in the talk of I. Zakharevich, for ¢ > 2, the rank of Kq(ﬁ’F)

equals the dimension of the space of indecomposables in H7(SL(&;),R);
hence

0 if g=0 mod 4;
ri+7, ifg=1 mod4;
kK (0x)={ ' 2 ’
kK, (0F) 0 ifg=2 mod4;

7, ifg=3 mod4;
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Example 6.2. When F = Q, we have r, =1, and r, = 0. So we obtain

0 ifg=0 mod4;

kK (Z)= 1 %fqzl mod 4;
1 0 ifg=2 mod4;

0 ifg=3 mod4;

Example 6.3. When F = Q(+/2), we have , = 2, and 7, = 0. So we obtain
0 ifg=0 mod4;

)2 ifg=1 mod4
rqu(Z[x/E])_ 0 ifg=2 mod4;
0 ifg=3 mod4;

Example 6.4. When F = Q(+/—5), we have r, =0, and r, = 1. So we
obtain

0 ifg=0 mod4;

—_ |1 ifg=1 mod4;

kK, (Z[v=5D) = 0 ifg=2 mod4;
1 ifg=3 mod4



