
ON THE FIBREWISE EFFECTIVE BURNSIDE∞-CATEGORY

CLARK BARWICK AND SAUL GLASMAN

Abstract. Effective Burnside∞-categories, introduced in [1], are the centerpiece of the
∞-categorical approach to equivariant stable homotopy theory. In this étude, we recall the
construction of the twisted arrow∞-category, and we give a new proof that it is an∞-
category, using an extremely helpful modification of an argument due to Joyal–Tierney [3].
The twisted arrow∞-category is in turn used to construct the effective Burnside∞-category.
We employ a variation on this theme to construct a fibrewise effective Burnside∞-category.
To show that this constuctionworks fibrewise, we introduce a fragment of a theory of what
we callmarbled simplicial sets, and we use a yet further modified form of the Joyal–Tierney
argument.

1. The twisted arrow∞-category

There are three basic endofunctors of the simplex category 𝛥: the identity id, the opposite
op (which simply reverses the ordering on the objects), and the constant functor 𝜅 at [0].
There is also the associative join or concatenation operation ⋆∶ 𝛥 × 𝛥 𝛥, so that [m] ⋆
[n] = [m + n + 1]. This join operation gives rise to a semigroup structure ⋆ on the set
End(𝛥) of endomorphisms, so that (𝑓 ⋆ 𝑔)[m] = 𝑓([m]) ⋆ 𝑔([m]). Velcheva [] shows that
the semigroup End(𝛥) is freely generated by id, op, and 𝜅.

Of particular import to us will be the endofunctor 𝜀 ≔ op ⋆ id. This induces a functor
𝒪 ≔ 𝜀⋆ ∶ 𝑠Set 𝑠Set, so that

𝒪 (𝑋)𝑛 = 𝑋([n]op ⋆ [n]) = 𝑋2𝑛+1.
This functor is (a twisted form of) the edgewise subdivision.

Lurie proved the following in [5, Pr. 4.2.3], but, as a way of introducing the basic tools we
will use here, we shall give our own, appreciably simpler, proof.

1.1. Proposition. For any∞-category 𝐶, the functor

𝒪 (𝐶) 𝐶op × 𝐶
induced by the inclusions op op ⋆ id and id op ⋆ id is a left fibration. In particular,
𝒪 (𝐶) is an∞-category.
The idea of our argument is to adapt an argument introduced by Joyal–Tierney [3]. Here is
the key notion.

1.2. Definition. A class of monomorphisms 𝐸 in an ordinary category satisfies the right
cancellation property if for any monomorphisms 𝑢 ∶ 𝑥 𝑦 and 𝑣 ∶ 𝑦 𝑧, if 𝑣 ∘ 𝑢 and 𝑢
both lie in 𝐸, then so does 𝑣.

1.3. Example. Observe that in any model category in which the cofibrations are precisely
the monomorphisms, the trivial cofibrations satisfy the right cancellation property.

1.4. Recollection. Let

𝑠𝑛 ∶ 𝐼𝑛 ≔ 𝛥{0,1} ∪𝛥
{1}
⋯∪𝛥

{𝑛−1}
𝛥{𝑛−1,𝑛} 𝛥𝑛

1
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be the inclusion of the spine of the 𝑛-simplex; this is of course inner anodyne.More generally,
if 𝐾 = {𝑎0,… , 𝑎𝑘} is a nonempty totally ordered finite set, then write

𝐼𝐾 ≔ 𝛥{𝑎0,𝑎1} ∪𝛥
{𝑎1} ⋯∪𝛥

{𝑎𝑘−1} 𝛥{𝑎𝑘−1,𝑎𝑘} ⊂ 𝛥𝐾.

Themaps 𝑠𝑛 also determine the class of inner anodyne maps the following sense:

1.5. Lemma (Joyal–Tierney, [3, Lm. 3.5]). A saturated class of monomorphisms of simplicial
sets that satisfies the right cancellation property contains the inner anodyne maps if and only if
it contains the spine inclusions 𝑠𝑛 for 𝑛 ≥ 2.

For the proof of Pr. 1.1, we will need a version of this statement that is suitable for left
fibrations.

1.6. Lemma. A saturated class of monomorphisms of simplicial sets that satisfies the right can-
cellation property contains the left anodyne maps if and only if it contains the spine inclusions
𝑠𝑛 for 𝑛 ≥ 2 as well as the horn inclusions

𝑖1 ∶ 𝛬10 𝛥1 and 𝑖2 ∶ 𝛬20 𝛥2.

Proof. Suppose 𝐸 is such a class. Let 𝐽𝑛 denote the union of edges in 𝛥𝑛

𝛥{0,1} ∪ 𝛥{0,2} ∪
𝑛−1

⋃
𝑖=2
𝛥{𝑖,𝑖+1}.

First we claim that the inclusion 𝐽𝑛 𝛥𝑛 belongs to 𝐸. Indeed, the inclusion

𝐽𝑛 𝛥2 ∪𝛥
{2}
𝛥{2,…,𝑛}

is clearly in 𝐸, as are the inclusions

𝐼𝑛 ∪𝛥
{0,1}
𝛥{0,1} 𝛥2 ∪𝛥

{2}
𝛥{2,…,𝑛}

and
𝐼𝑛 ∪𝛥

{0,1}
𝛥{0,1} 𝛥𝑛,

which proves the claim.
The remaining necessity is that the inclusion

𝐽𝑛 𝛬𝑛0
lie in 𝐸. Following the proof of Lm. 1.5, we’ll prove something slightly more general. Write
𝛥 ̂𝑠 for the face 𝛥{0,1,…,𝑠−1,𝑠+1,…,𝑛} of 𝛥𝑛 opposite 𝑠, and for any subset 𝑆 ⊂ {0,… , 𝑛}, write

𝛬𝑛𝑆 ≔ ⋃
𝑠∉𝑆
𝛥 ̂𝑠.

(Equivalently, 𝛬𝑛𝑆 is the union of the faces of 𝛥𝑛 that contain the simplex 𝛥𝑆.) We shall now
show that the inclusion

𝐽𝑛 𝛬𝑛𝑆
is in 𝐸 for any 𝑆 with

{0} ⊆ 𝑆 ⫋ {0, 2, 3,⋯ , 𝑛}.
This prescription on 𝑆 implies that𝛥{0,1} is an edge of𝛬𝑛𝑆 , so this definitionmakes sense.We’ll
use induction on both 𝑛 and 𝑛 − |𝑆|. Of course, the statement is vacuous if 𝑛 = 1. Suppose
that 𝑛 − |𝑆| = 1, which is the least possible value, so that 𝑆 = {0, 2,⋯ 𝑛} ⧵ {𝑎} for some 𝑎 with
2 ≤ 𝑎 ≤ 𝑛. Then

[𝐽𝑛 𝛥{0,1} ∪ 𝛥1̂] ∈ 𝐸,
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and since
𝛥 ̂𝑎 ∩ (𝛥{0,1} ∪ 𝛥1̂) = 𝛥{0,1} ∪ (𝛥1̂ ∩ 𝛥 ̂𝑎),

we see that [𝐽𝑛 𝛬𝑛𝑆] ∈ 𝐸 in this case.
In general, choose some 𝑎 ∉ 𝑆 with 𝑎 ≠ 1. Then we’re reduced to showing that

[𝛬𝑛𝑆∪{𝑎} 𝛬𝑛𝑆] ∈ 𝐸,

which we’ll naturally accomplish by showing that

[(𝛥 ̂𝑎 ∩ 𝛬𝑛𝑆∪{𝑎} 𝛥 ̂𝑎)] ∈ 𝐸.

But since {0} ⊆ 𝑆 ⫋ ({0, 2, 3,⋯ 𝑛} − {𝑎}), this follows from the induction hypothesis. �

Proof of Pr. 1.1. Write 𝜀! for the left Kan extension 𝑠Set 𝑠Set along 𝜀. This is left adjoint
to 𝜀⋆. Now consider the class 𝐸 of monomorphisms 𝑓 ∶ 𝑋 𝑌 of simplicial sets such that
the map

𝜀!(𝑋) ∪𝑋
op⊔𝑋 (𝑌op ⊔ 𝑌) 𝜀!(𝑌)

is a trivial cofibration for the Joyal model structure. It’s easy to see that 𝐸 is a saturated class
that satisfies the right cancellation property. Furthermore, by adjunction, it’s clear that any
morphism of 𝐸 has the left lifting property with respect to 𝒪 (𝐶) 𝐶op × 𝐶. Consequently,
Lm. 1.6 implies that we need only to show that the spine inclusions 𝑠𝑛 and the horn inclusion
𝑖2 all lie in 𝐸.

If 𝑛 ≥ 2, write {𝑛, 𝑛 − 1,… , 0} for the poset [n]op. Observe that the monomorphism

𝜀!(𝐼𝑛) ∪𝐼
𝑛,op⊔𝐼𝑛 (𝛥𝑛,op ⊔ 𝛥𝑛) 𝜀!(𝛥𝑛)

is isomorphic to the inclusion of the iterated union

𝑈 ≔ (⋯ ((𝛥{𝑛,𝑛−1,…,0} ∪𝛥
{0,0}
𝛥{0,…,𝑛−1,𝑛}) ∪𝐼

{1,0,0,1}
𝛥{1,0,0,1}) ∪𝐼

{2,1,1,2}
⋯)∪𝐼

{𝑛,𝑛−1,𝑛−1,𝑛}
𝛥{𝑛,𝑛−1,𝑛−1,𝑛}

into 𝛥{𝑛,𝑛−1,…,0,0,…,𝑛−1,𝑛}. It’s a simple matter to see that the inclusion

𝛥{𝑛,𝑛−1,…,0} ∪𝛥
{0,0}
𝛥{0,…,𝑛−1,𝑛} 𝛥{𝑛,𝑛−1,…,0,0,…,𝑛−1,𝑛}

is inner anodyne, and the inclusion

𝛥{𝑛,𝑛−1,…,0} ∪𝛥
{0,0}
𝛥{0,…,𝑛−1,𝑛} 𝑈

is clearly an iterated pushout of inner anodyne maps, so the right cancellation property
implies that 𝑈 𝛥{𝑛,𝑛−1,…,0,0,…,𝑛−1,𝑛} is a trivial cofibration for the Joyal model structure,
whence 𝑠𝑛 lies in 𝐸.

It remains to show that the horn inclusions 𝑖1 and 𝑖2 lie in𝐸. First, note that themonomor-
phism

𝜀!(𝛬10) ∪(𝛬
1
0)op⊔𝛬10 (𝛥1,op ⊔ 𝛥1) 𝜀!(𝛥1)

is isomorphic to the spine inclusion 𝑠3 ∶ 𝐼3 𝛥3, which is clearly inner anodyne; hence 𝑖1
lies in 𝐸. Observe also that the monomorphism

𝜀!(𝛬20) ∪(𝛬
2
0)op⊔𝛬20 (𝛥2,op ⊔ 𝛥2) 𝜀!(𝛥2)

is isomorphic to the inclusion of the union

𝑉 ≔ 𝛥2,op ∪(𝛬
2
0)op (𝛥{2,0,0,2} ∪𝛥

{0,0}
𝛥{1,0,0,1}) ∪𝛬

2
0 𝛥2

into 𝛥{2,1,0,0,1,2}. The simplical set 𝑉 contains the spine 𝐼{2,1,0,0,1,2}, and it’s a simple matter
to see that the inclusion 𝐼{2,1,0,0,1,2} 𝑉 is inner anodyne; hence by the right cancellation
property, we deduce that𝑉 𝛥{2,1,0,0,1,2} is a trivial cofibration for the Joyalmodel structure.
It thus follows that 𝑖2 lies in 𝐸. �
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We call 𝒪 (𝑋) the twisted arrow ∞-category of 𝑋. We justify this language by noting
that if 𝑋 is a 1-category, then 𝒪 (𝑋) is a 1-category as well, and it agrees with the classical,
1-categorical twisted arrow category.

2. The effective Burnside∞-category

The functor 𝜀 also induces a functor 𝜀⋆ ∶ 𝑠Set 𝑠Set, which is right adjoint to 𝜀⋆. Con-
sequently, for any simplicial set𝑋,

(𝜀⋆𝑋)𝑛 ≅ Mor(𝒪 (𝛥𝑛),𝑋)

2.1.Definition. If 𝐶 admits all pullbacks, then we define the effective Burnside∞-category
of 𝐶 is the simplicial subset

𝐴eff(𝐶) ⊂ (𝜀⋆(𝐶op))op

whose 𝑛-simplices are those functors 𝑋 ∶ 𝒪 (𝛥𝑛)op 𝐶 such that for any integers 0 ≤ 𝑖 ≤
𝑘 ≤ 𝑙 ≤ 𝑗 ≤ 𝑛, the square

𝑋𝑖𝑗 𝑋𝑘𝑗

𝑋𝑖𝑙 𝑋𝑘𝑙

is a pullback.

The name is justified by the following result.

2.2. Proposition ([1, Pr. 5.6]). If 𝐶 is an∞-category that admits all pullbacks, then 𝐴eff(𝐶)
is an∞-category.

We will generalize this result by providing a fibrewise effective Burnside construction in the
next section. But first, let us discuss a form of the effective Burnside∞-category in which
the maps that appear are from certain chosen classes.

2.3.Definition. A triple (𝐶,𝐶†,𝐶†) of∞-categories consists of an∞-category 𝐶 and two
subcategories 𝐶† ⊂ 𝐶 and 𝐶† ⊂ 𝐶, each of which contains all the equivalences.1 The mor-
phisms of 𝐶† are called ingressive, and the morphisms of 𝐶† are called egressive.

A triple (𝐶,𝐶†,𝐶†) is said to be adequate if, for any ingressive morphism 𝑌 𝑋 and
any egressive morphism𝑋′ 𝑋, there exists a pullback square

𝑌′ 𝑋′

𝑌 𝑋

in which 𝑌′ 𝑋′ is ingressive, and 𝑌′ 𝑌 is egressive. (Such a square will be called
ambigressive.)

The effective Burnside∞-category of an adequate triple (𝐶,𝐶†,𝐶†) is the simplicial subset

𝐴eff(𝐶,𝐶†,𝐶†) ⊂ (𝜀⋆(𝐶op))op

1Recall [4, §1.2.11] that subcategories determine and are determined by subcategories of their homotopy
categories.
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whose 𝑛-simplices are those functors 𝑋 ∶ 𝒪 (𝛥𝑛)op 𝐶 such that for any integers 0 ≤ 𝑖 ≤
𝑘 ≤ 𝑙 ≤ 𝑗 ≤ 𝑛, the square

𝑋𝑖𝑗 𝑋𝑘𝑗

𝑋𝑖𝑙 𝑋𝑘𝑙

is an ambigressive pullback.

2.4.Theorem ([1, Th. 12.2]). Suppose (𝐶,𝐶†,𝐶†) and (𝐷,𝐷†,𝐷†) adequate triples, and sup-
pose 𝑝 ∶ 𝐶 𝐷 an inner fibration that preserves ingressive morphisms, egressive morphisms,
and ambigressive pullbacks. Then the induced functor

𝐴eff(𝑝) ∶ 𝐴eff(𝐶,𝐶†,𝐶†) 𝐴eff(𝐷,𝐷†,𝐷†)

is an inner fibration as well. Furthermore, assume the following.
(2.4.1) For any ingressive morphism 𝑔 ∶ 𝑠 𝑡 of 𝐷 and any object 𝑥 ∈ 𝐶𝑠, there exists

an ingressive morphism 𝑓 ∶ 𝑥 𝑦 of 𝐶 covering 𝑔 that is both 𝑝-cocartesian and
𝑝†-cocartesian.

(2.4.2) Suppose 𝜎 a commutative square

𝑥′ 𝑦′

𝑥 𝑦,

𝑓′

𝜙 𝜓

𝑓

of 𝐶 such that the square 𝑝(𝜎) is an ambigressive pullback in 𝐷, the morphism 𝑓′ is
ingressive, the morphism 𝜙 is egressive, and the morphism 𝑓 is 𝑝-cocartesian. Then 𝑓′
is 𝑝-cocartesian if and only if the square is an ambigressive pullback (and in particular
𝜓 is egressive).

Then an edge 𝑓 ∶ 𝑦 𝑧 of 𝐴eff(𝐶,𝐶†,𝐶†) is 𝐴eff(𝑝)-cocartesian if it is represented as a span

𝑢

𝑦 𝑧,

𝜙 𝜓

in which 𝜙 is egressive and 𝑝-cartesian and 𝜓 is ingressive and 𝑝-cocartesian.

2.5. Observe that the projections

𝒪 (𝛥𝑛)op 𝛥𝑛 and 𝒪 (𝛥𝑛)op (𝛥𝑛)op

induce inclusions

𝐶† 𝐴eff(𝐶,𝐶†,𝐶†) and (𝐶†)op 𝐴eff(𝐶,𝐶†,𝐶†).

2.6. Construction. Suppose 𝑆 an∞-category, and suppose 𝑝 ∶ 𝑋 𝑆 an inner fibration.
Declare a morphism of𝑋 to be ingressive if it is lies over an equivalence of 𝑆, and declare a
morphism of𝑋 to be egressive if it is 𝑝-cartesian. Then the morphism of triples

(𝑋,𝑋†,𝑋†) (𝑆, 𝜄𝑆, 𝑆)

satisfies all the conditions of Th. 2.4, whence one has an inner fibration

𝐴eff(𝑝) ∶ 𝐴eff(𝑋,𝑋†,𝑋†) 𝐴eff(𝑆, 𝜄𝑆, 𝑆)
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We may now pull this inner fibration back along the equivalence 𝑆op 𝐴eff(𝑆, 𝜄𝑆, 𝑆) to
obtain an inner fibration

𝑝∨ ∶ 𝑋∨ 𝑆op.
This will be called the right dual of 𝑝. The objects of 𝑋∨ are the objects of 𝑋, but an edge
𝑥 𝑦 is a span

𝑢

𝑥 𝑦

𝑓 𝑔

of𝑋 in which 𝑓 is a 𝑝-cartesian edge, and 𝑝(𝑔) is a degenerate edge of 𝑆. This morphism is
𝑝∨-cocartesian just in case 𝑔 is an equivalence.

One can equally well form the left dual of 𝑝, which is the inner fibration

((𝑝op)∨)op ∶ ((𝑋op)∨)op 𝑆op,

which, to distinguish it from the right dual, we denote by ∨𝑝 ∶ ∨𝑋 𝑆op. In ∨𝑋, the objects
are again those of𝑋, but an edge 𝑥 𝑦 is a cospan

𝑢

𝑥 𝑦

𝑓 𝑔

of 𝑋 in which 𝑝(𝑓) is a degenerate edge of 𝑆, and 𝑔 is 𝑝-cocartesian. This morphism is
∨𝑝-cartesian just in case 𝑓 is an equivalence.

One also has the two opposite duals

(𝑝op)∨ = (∨𝑝)op and (𝑝∨)op = ∨(𝑝op).

It is shown in [2] that if 𝑝 is a cartesian fibration classified by a functor 𝐹 ∶ 𝑆op Cat∞,
then 𝑝∨ is a cocartesian fibration classified by 𝐹, and of course the opposite dual (𝑝∨)op =
∨(𝑝op) is a cartesian fibration classified by op ∘ 𝐹. Dually, if 𝑝 is a cocartesian fibration
classified by a functor 𝐺 ∶ 𝑆 Cat∞, then ∨𝑝 is a cocartesian fibration classified by 𝐺, and
the opposite dual (𝑝op)∨ = (∨𝑝)op is a cocartesian fibration classified by op ∘ 𝐺.

3. The fibrewise effective Burnside∞-category

Let 𝑝 ∶ 𝑋 𝑆 be a cocartesian fibration of∞-categories in which each fiber admits
pullbacks and all the pushforward functors preserve pullbacks. Then the straightening of 𝑝
is a functor

𝐹 ∶ 𝑆 Cat∞
which factors through the subcategory Catpb∞ of ∞-categories admitting pullbacks and
pullback-preserving functors.The effective Burnside category construction defines a functor

𝐴eff ∶ Catpb∞ Cat∞,

and by unstraightening the composite𝐴eff ∘𝐹, we get a cocartesian fibration 𝑞 ∶ 𝐴eff𝑆 (𝑋) 𝑆
such that for any vertex 𝑠 ∈ 𝑆,

𝑞−1(𝑠) ≃ 𝐴eff(𝑋𝑠).

Our goal in the next part of this appendix is to to provide a direct construction of 𝐴eff𝑆 (𝑋).
The structural support for this will be a homotopy theory of “marbled simplicial sets,” a tiny
fragment of an as-yet-unknown generalization of Lurie’s theory of categorical patterns [6,
Appendix B].



ON THE FIBREWISE EFFECTIVE BURNSIDE∞-CATEGORY 7

3.1.Definition. Amarbled simplicial set is a triple (𝑆,𝑀,𝐵) consisting of a simplicial set 𝑆
together with
▶ a collection𝑀 ⊂ 𝑆1 of edges of 𝑆 – whose elements will be called themarked edges

– that contains all the degenerate edges, and
▶ a collection 𝐵 ⊂ Mor(𝛥1 × 𝛥1, 𝑆) of squares – whose elements will be called the

blazed squares – that contains all constant squares.
The category of marbled simplicial sets and maps that preserve the marked edges and the

blazed squares will be denoted 𝑠Setmbl.

3.2. Example. For any simplicial set 𝑆, we obtain a marbled simplicial set 𝑆♯♭ in which all
edges are marked but only the constant squares are blazed. We will abuse notation slightly
and write 𝑠Setmbl

/𝑆 for the category 𝑠Setmbl
/𝑆♯♭ .

3.3. Example. Suppose 𝑝 ∶ 𝑋 𝑆 a cocartesian fibration whose fibers 𝑋𝑠 all admit pull-
backs and whose pushforward functors 𝑋𝑠 𝑋𝑡 preserve pullbacks. Then one obtains a
marbled simplicial set𝑋♮♮ in which the marked edges are precisely the 𝑝-cocartesian edges,
and the blazed squares are precisely the pullback squares which are contained in the fibers
of 𝑝.

3.4. Definition. Suppose 𝑝 ∶ 𝐸 𝐵 is a morphism of marbled simplicial sets. Then 𝑝
is called a marbled fibration if it is of the form 𝑋♮♮ 𝑆♯♭ for some cocartesian fibration
𝑋 𝑆 whose fibers 𝑋𝑠 all admit pullbacks and whose pushforward functors 𝑋𝑠 𝑋𝑡
preserve pullbacks.2

3.5. Definition. An inclusion 𝑖 ∶ 𝐾 𝐿 of marbled simplicial sets is a marbled trivial
cofibration if for any marbled fibration 𝑝 ∶ 𝐸 𝐵 and any solid arrow square

𝐾 𝐸

𝐿 𝐵,

𝑖 𝑝

a dotted lift exists.

3.6. It is natural to expect that, for any simplicial set 𝑆, there is a model structure on 𝑠Setmbl
/𝑆

whose fibrant objects are the marbled fibrations𝑋♮♮ 𝑆♯♭ and whose cofibrations are the
monomorphisms. We leave such questions to enterprising readers.

3.7.Definition. Recall that 𝑠Set+ denotes the category of marked simplicial sets. Let

𝐹 ∶ 𝑠Set+ 𝑠Setmbl

be the unique functor such that
▶ 𝐹((𝛥𝑛)♭) is the full subcategory of 𝒪 (𝛥𝑛)op × 𝛥𝑛 spanned by those triples ((𝑖, 𝑗), ℎ)

for which 0 ≤ 𝑖 ≤ 𝑗 ≤ ℎ ≤ 𝑛, in which
– an edge is marked just in case its image in 𝒪 (𝛥𝑛)op is constant, and
– a square is blazed just in case it’s spanned by vertices

((𝑖0, 𝑗0), ℎ), ((𝑖0, 𝑗1), ℎ), ((𝑖1, 𝑗0), ℎ), ((𝑖1, 𝑗1), ℎ)

where 0 ≤ 𝑖1 ≤ 𝑖0 ≤ 𝑗0 ≤ 𝑗1 ≤ ℎ ≤ 𝑛;

2One could define fibrations over a more general marbled base, but we will not need this generality here.
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▶ 𝐹((𝛥1)♯) has the same underlying blazed simplicial set as 𝐹((𝛥1)♭), but has all edges
marked;
▶ 𝐹 commutes with all colimits.

There is, in addition, an obvious natural transformation 𝐹 (−)♭, where (−)♭ is the
functor that carries any marked simplicial set to the marbled simplicial set with the same
markings in which only the constant squares are blazed. On simplices, the natural transfor-
mation is the restriction of the projection 𝒪 (𝛥𝑛)op × 𝛥𝑛 𝛥𝑛.

3.8. Clearly 𝐹((𝛥0)♭) is simply (𝛥0)♯♭. The marbled simplicial set 𝐹((𝛥1)♭) is the nerve of
the category

000

001 111.

011

∼

in which (in addition to the degenerate ones) the edge labeled by ∼ is marked, and no non-
constant squares is blazed. The marbled simplicial set 𝐹((𝛥2)♭) is the nerve of the category

000

001 111

002 011 112 222

012 122

022

∼

∼

∼

∼

in which (in addition to the degenerate ones) the edges labeled by ∼ are marked, and (in
addition to the constant ones) the square

022 012

012 112

is blazed.

3.9.Definition. Suppose 𝑝 ∶ 𝑋 𝑆 a cocartesian fibration whose fibers𝑋𝑠 all admit pull-
backs and whose pushforward functors𝑋𝑠 𝑋𝑡 preserve pullbacks. We define 𝐴eff𝑆 (𝑋) to
be the unique marked simplicial set over 𝑆♯ yielding, for any marked map 𝜎 ∶ 𝐾 𝑆♯, a
bijection

Hom𝑠Set+/𝑆 (𝐾,𝐴
eff
𝑆 (𝑋)) ≅ Hom𝑠Setmbl

/𝑆
(𝐹(𝐾),𝑋),

natural in 𝜎.

If 𝑠 ∈ 𝑆0, then an 𝑛-simplex of the fiber 𝐴eff𝑆 (𝑋)𝑠 is a functor 𝐹(𝛥𝑛) 𝑋𝑠 taking all
marked edges to equivalences and all blazed squares to pullback squares. There’s an obvious
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map

𝐴eff𝑆 (𝑋)𝑠 𝐴eff(𝑋𝑠)

given by restriction to 𝒪 (𝛥𝑛)op ×𝛥{𝑛}, and it’s a simple matter to see that this map is a trivial
Kan fibration. This means that the projection 𝜌 ∶ 𝐴eff𝑆 (𝑋) 𝑆 has the desired fibers. What’s
not clear at this point is whether 𝜌 is an inner fibration or anything like that. In fact, what’s
true is the following:

3.10.Theorem. The functor 𝜌 ∶ 𝐴eff𝑆 (𝑋) 𝑆 is a cocartesian fibration whose marked edges
are precisely the cocartesian edges.

The following key lemma isolates most of what we need about the combinatorics of the
functor 𝐹.

3.11. Lemma. Let

𝑠𝑛 ∶ 𝐼𝑛,♭ = (𝛥{0,1} ∪𝛥
{1}
⋯∪𝛥

{𝑛−1}
𝛥{𝑛−1,𝑛})♭ (𝛥𝑛)♭

be the inclusion of the spine of the 𝑛-simplex. Then 𝐹(𝑠𝑛) is a marbled trivial cofibration.

Proof. We induct on 𝑛. For 𝑛 = 1, the statement is vacuous, so we are reduced to showing
that the inclusion

𝑤𝑛 ∶ 𝐹(𝛥{0,⋯,𝑛−1}) ∪ 𝐹(𝛥{𝑛−1,𝑛}) 𝐹(𝛥𝑛)

is a marbled trivial cofibration. We’ll simply factor 𝑤𝑛 into a composite of a few maps, each
of which is clearly a marbled trivial cofibration, as follows. For a collection of objects 𝐽 of
𝐹(𝛥𝑛), we’ll denote the full subcategory spanned by 𝐽 by ⟨𝐽⟩. All marblings are inherited
from 𝐹(𝛥𝑛) in the following factorization:

𝐹(𝛥{0,⋯,𝑛−1}) ∪ 𝐹(𝛥{𝑛−1,𝑛})

⟨{((𝑖, 𝑗), ℎ) | 𝑖 < 𝑛 − 1 ∧ 𝑗 < 𝑛}⟩ ∪ ⟨{((𝑛 − 2, 𝑛 − 1), 𝑛 − 1), ((𝑛 − 1, 𝑛 − 1), 𝑛 − 1)}⟩ ∪ 𝐹(𝛥{𝑛−1,𝑛})

⟨{((𝑖, 𝑗), ℎ) | 𝑗 < 𝑛}⟩ ∪ ⟨{((𝑖, 𝑗), ℎ) | 𝑛 − 1 ≤ 𝑖 ∧ 𝑗 ≤ 𝑛 ∧ ℎ ≤ 𝑛}⟩

𝐹(𝛥𝑛).

It is easy to see that each of these is a marbled trivial cofibration. �

3.12. Notation. If 𝑃 is any simplicial subset of 𝛥𝑛, then we’ll denote by 𝑙𝑃 the following
marked simplicial set:
▶ if 𝑃 does not contain the edge 𝛥{0,1}, then 𝑙𝑃 = 𝑃♭;
▶ if 𝑃 does not contain the edge 𝛥{0,1}, then 𝑙𝑃 = (𝑃,𝑀), where𝑀 = {𝛥{0,1}} ∪ 𝑠0(𝑃0).

3.13. Lemma. The functor 𝜌 ∶ 𝐴eff𝐵 (𝑇) 𝐵 is an inner fibration.

Proof. The class of monomorphisms 𝑓 ∶ 𝑋 𝑌 of simplicial sets such that 𝐹(𝑓♭) is a
marbled trivial cofibration is a saturated class of morphisms with the right cancellation
property. By Lm. 3.11 and the observation above, it contains all the inner anodynemaps. �
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To prove that 𝜌 is a cocartesian fibration, we note that there’s certainly a sufficient supply
of marked edges in 𝐴eff𝐵 (𝑇), so if we can show that marked edges are cocartesian, then 𝜌
will be a cocartesian fibration. To this end, we first note that the marked anodyne lefn horn
inclusions

𝑖1 ∶ 𝑙𝛬10 𝑙𝛥1 and 𝑖2 ∶ 𝑙𝛬20 𝑙𝛥2

have the property that 𝐹(𝑖1) and 𝐹(𝑖2) are marbled trivial cofibrations.
Now the desired result follows directly from the following, which is an adaptation of Lms.

1.5 and 1.6 for the cocartesian model structure.

3.14. Lemma. The smallest saturated class 𝐸 of morphisms of marked simplicial sets with the
right cancellation property and containing the marked spine inclusions 𝑠𝑛 for 𝑛 ≥ 2 and the
marked left horn inclusions 𝑖1 and 𝑖2 also contains all left horn inclusions

𝑖𝑛 ∶ 𝑙𝛬𝑛0 𝑙𝛥𝑛.
for 𝑛 ≥ 2.

Proof. Theproof is almost exactly the same as that of Lm. 1.6. First we note that the inclusion
𝑙𝐽𝑛 𝑙𝛥𝑛 belongs to 𝐸; the argument is exactly as in Lm. 1.6, except that all simplicial sets
are marked via 𝑙. Furthermore, the inclusion

𝑙𝐽𝑛 𝑙𝛬𝑛𝑆
lies in 𝐸 for any 𝑆 with

{0} ⊆ 𝑆 ⫋ {0, 2, 3,⋯ , 𝑛},
again with the argument of Lm. 1.6 modified only to mark all simplicial sets via 𝑙. �
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